تعداد نشریات | 44 |
تعداد شمارهها | 1,300 |
تعداد مقالات | 15,900 |
تعداد مشاهده مقاله | 52,143,645 |
تعداد دریافت فایل اصل مقاله | 14,910,242 |
شبیه سازی عددی بیورآکتور غشایی بافت مجوف و بررسی پارامترهای مربوط به کشت سلول های حیوانی | ||
مهندسی مکانیک دانشگاه تبریز | ||
مقاله 45، دوره 49، شماره 4، دی 1398، صفحه 289-298 اصل مقاله (9.18 M) | ||
نوع مقاله: مقاله پژوهشی | ||
نویسندگان | ||
سهراب ولدبیگی1؛ فرزان قالیچی2؛ رضا یگانی* 3؛ علی اکبری4 | ||
1کارشناسی ارشد، دانشکده مهندسی مکانیک، دانشگاه صنعتی سهند، تبریز، ایران | ||
2استاد، دانشکده مهندسی مکانیک، دانشگاه صنعتی سهند، تبریز، ایران | ||
3استاد، دانشکده مهندسی شیمی، دانشگاه صنعتی سهند، تبریز، ایران | ||
4استادیار، دانشکده مهندسی شیمی، دانشگاه صنعتی سهند، تبریز، ایران | ||
چکیده | ||
در طی دهههای اخیر توجه بسیاری از محققین به مهندسی بافت و سلول درمانی جلب شده است. بیورآکتورهای غشایی بافت مجوف یکی از روشهای مدرن تولید ساختارهای سه بعدی بافت زنده میباشند. در مقاله حاضر، به شبیهسازی چهار رشته بافت مجوف در کنار یکدیگر با استفاده از بسته نرمافزاریANSYS FLUENT پرداخته شده و اثرات همه آنها، بر روی محیط سلولها بهصورت سهبعدی مورد مطالعه قرارگرفتهاست. برای پیشبینی و طراحی بهینه بیورآکتور غشایی، پارامترهای جریان و توزیع غلظتهای اجزای مهم شامل اکسیژن و گلوکز محاسبه و بررسی شدهاند. نتایج حاصل از بررسی تاثیر غلظت سلولی و فاصله از ورودی بر روی غلظتهای اکسیژن و گلوکز نشان داد که در غلظتهای سلولی بالا (2 cells/ml)، با افزایش فاصله از ورودی، میزان غلظت اکسیژن و گلوکز کاهش چشمگیری پیدا میکند. همچنین با افزایش سرعت ورودی، افزایش چشمگیری در میزان غلظت اکسیژن و گلوکز مشاهده شد. نتایج مربوط به بررسی تغییرات طول بیورآکتور نشان داد که غلظت اکسیژن و گلوکز در طول رشتهها و در فواصل مختلف از ورودی، تغییر نکردند. | ||
کلیدواژهها | ||
بیورآکتور غشایی بافت مجوف؛ مهندسی بافت؛ کشت سلول حیوانی؛ مدل سازی سه بعدی؛ دینامیک سیالات محاسباتی CFD | ||
مراجع | ||
[1] Freshney R.I., Basic Principles of Cell Culture, in Culture of Cells for Tissue Engineering. Wiley, 2005. [2] Goncalo J.M., Hematopoietic stem cells: from the bone to the bioreactor. TRENDS in Biotechnology, Vol. 21, No. 5, pp. 233-240, 2003. [3] Kresnowati M.T.A.P., Forde G.M., Chen X.D., Model-based analysis and optimization of bioreactor for hematopoietic stem cell cultivation. Springer, 2011. [4] Carlos A.V., Rodrigues, T.G.F., Maria Margarida D., da Silva C.L, M.S.Cabral J., Stem cell cultivation in bioreactors. Biotechnology Advances, Vol. 29, No. 6, pp. 815-829, 2011. [5] Hanga M.P., Pacek M.H., Nienow A.W., Coopman K., Hewitt C.J., Expansion of bone marrow-derived human mesenchymal stem/stromal cells (hMSCs) using a two-phase liquid/liquid system. Journal of Chemical Technology & Biotechnology. Vol. 92, pp. 1577-1589, 2017. [6] Carpentier B., Legallais C., Artificial and bioartificial liver devices: present and future. Gut, Vol. 58, pp. 1690-1702, 2009. [7] Powers M.J., Kaazempur-Mofrad M.R., Kalezi A., Capitano A., Upadhyaya A., A microfabricated array bioreactor for perfused 3D liver culture. Biotechnology and Bioengineering, Vol. 78, pp. 257-269, 2002. [8] Tzanakakis E.S., Sielaff T.D., Hu W-S, Extracorporeal tissue engineered liver-assist devices. BioMedical Engineering, Vol. 2, pp. 607-632, 2000. [9] Garza-Garcia L.D., Camacho-Leon S., del Refugio Rocha-Pizana M., Lopez-Pacheco F., Lopez-Meza J., Continuous flow micro-bioreactors for the production of biopharmaceuticals: the effect of geometry, surface texture, and flow rate. Lab on a Chip, Vol. 14, pp. 1320-1329, 2014. [10] Abdullah N.S., Jones D.R., Das D.B., Nutrient transport in bioreactors for bone tissue growth:Why do hollow fibre membrane bioreactors work. Chemical Engineering Science, Vol. 64, No. 1, pp. 109-125, 2009. [11] Cadwell, J.J.S., New Developments in Hollow-Fiber Cell Culture. American biotechnology laboratory, Vol. 22, No. 8, 2004. [12] Griffith L.G., Tissue engineering- current challenges and expanding opportunities. Science, Vol. 295, No. 5557, pp. 1009-1014, 2002. [13] Khakpour S., D.R.A., Curcio E., Di Maio FP., Giorno L., De Bartolo L., Oxygen transport in hollow fiber membrane bioreactors for hepatic 3D cell culture: a parametric study. Membrane Science, Vol. 544, pp. 312-322, 2017. [14] Mavri-Damelin D., D.L., Eaton S., Rees M., Selden C., Hodgson H.J., Cells for bioartificial liver devices: the human hepatoma-derived cell line C3A produces urea but does not detoxify ammonia. Biotechnology and Bioengineering, Vol. 99, pp. 644–651, 2008. [15] De Bartolo L., S.S., Curcio E., Piscioneri A., Rende M., Morelli S., Human hepatocyte functions in a crossed hollow fiber membrane bioreactor. Biomaterials, Vol. 30, pp. 2531–2543, 2009. [16] Kelsey L.J., M.R.P., Zydney A.L., Theoretical analysis of convective flow profiles in a hollow-fiber membrane bioreactor. Chemical Engineering Science, Vol. 45, No. 11, pp. 3211-3220, 1990. [17] Boyd R. F., Lopez M., Stephens C. L., Velez G. M., Ramirez, C. A., Zydney A. L., Solute wash-out experiments for characterizing mass transport in hollow fiber immunoisolation membranes. Annals of Biomedical Engineering, Vol. 26, No. 4, pp. 618-626, 1998. [18] Heath C.A., Belfort G., Hammer B.E., Mirrer S.D., Pimbley J.M., Magnetic resonance imaging and modelling of flow in hollow-fiber bioreactors. AlChE Journal, Vol. 36, No. 4, 1990. [19] Piret J.M., Cooney C.L., Mammalian cell and protein distributions in ultrafiltration hollow fiber bioreactors. Biotechnology and Bioengineering, Vol. 36, No. 9, pp. 902-910, 1990. [20] Ronco C., Orlandini G., Brendolan A., Lupi A., La Greca G., Enhancement of convective transport by internal filtration in a modified experimental hemodialyzer. Kidney International, Vol. 54, No. 3, pp. 979-985, 1998. [21] Legallais C., Catapano G., von Harten B., Baurmeister U., A theoretical model to predict the in vitro performance of hemodiafilters. Journal of Membrane Science, Vol. 168, No. 1–2, pp. 3-15, 2000. [22] Catapano G., Legallais C., von Harten B., Baurmeister U., Use of a predictive model of HD/HDF based on a cascade of communicating CSTs to design modules with enhanced HMW solute clearance. Desalination, Vol. 145, No. 1-3, pp. 233-235, 2002. [23] De Napoli IE., Catapano G., Perfusion enhances solute transfer into cell compartment of hollow fibre membrane bioreactors for bone tissue engineering. The International Journal of Artificial Organs, Vol. 33, No. 6, pp. 381-391, 2010. [24] Bruining W.J., A general description of flows and pressure in hollow fiber membrane modules. Chemical Engineering Science, Vol. 44, No. 6, pp. 1441-1447, 1989. [25] Labecki M., Piret J.M., Bowen B.D., Two-dimensional analysis of fluid flow in hollow-fibre modules. Chemical Engineering Science, Vol. 50, No. 21, pp. 3369-3384, 1995. [26] Ehrhardt M., An introduction to fluid-porous interface coupling, Progress in Computational Physics, in: Bergische University, 2010. [27] Zahm A.M., Bucaro M.A., Ayyaswamy P.S., Srinivas V., Shapiro I.M., Adams C.S., Mukundakrishnan K., Numerical modelling of oxygen distribution in cortical and cancellous bone: oxygen availability governs osteonal and trabecular dimensions. American Journal of Physiology-Cell Physiology, Vol. 299, No. 5, pp. 922-929, 2010. [28] Windhaber R.A., Wilkins R.J., Meredith D., Functional characterization of glucose transport in bovine articular chondrocytes. Pflügers Archiv: European Journal of Physiology, Vol. 446, No. 5, pp. 572-577, 2003. [29] Ma T., Grayson W.L., Fröhlich M., Vunjak-Novakovic G., Hypoxia and set-cell based engineering of mesenchymal tissues. Biotechnology Progress, Vol. 25, No. 1, pp. 32-42, 2009. [30] Cechowska-Pasko M., Surazyński A., Bańkowski E., The effect of glucose deprivation on collagen synthesis in fibroblast cultures. Molecular and Cellular Biochemistry, Vol. 327, No. 1-2, pp. 211-218, 2009. [31] Das D.B., Hanspal N.S., Nassehi V., Analysis of hydrodynamic conditions in adjacent free and heterogeneous porous flow domain. Hydrogeol.Processes, Vol. 19, No. 14, pp. 2775-2799, 2005. [32] Unnikrishnan G.U., Unnikrishnan V.U., Reddy J.N., Finite element model for nutrient distribution analysys of a hollow fiber membrane bioreactor. International Journal of Numerical Methods in Biomedical Engineering, Vol. 28, No. 2, pp. 229-238, 2012. [33] Das D.B., Multiscale simulation of nutrient transport in hollow fibre membrane bioreactor for growing bone tissue: Sub-cellular scale and beyond. Chemical Engineering Science, Vol. 62, No. 13, pp. 3627-3639, 2007. [34] Ester De Napoli I., S.S., Giannoni P., Quarto R., Catapano G., Mesenchymal stem cell culture in convection-enhanced hollow fibre membrane bioreactors for bone tissue engineering. Journal of Membrane Science, Vol. 379, No. 1–2, pp. 341-352 2011. [35] Abdullah N.S., Das D.B., Modelling nutrient transport in hollow fibre membrane bioreactor for growing bone tissue with consideration of multi-component interactions. Chemical Engineering Science, Vol. 62, No. 21, pp. 5821-5839, 2007. [36] Hua Y., B.Das D., T.Triffitt J., Cui Z., Modelling nutrient transport in hollow fibre membrane bioreactors for growing three-dimensional bone tissue. Journal of Membrane Science, Vol. 272, No. 1–2, pp. 169-178, 2006. [37] Curcio E., De Bartolo L., Barbieri G., Rende M., Giorno L., Morelli S., Drioli E., Diffusive and convective transport through hollow fiber membranes for liver cell culture. Journal of Biotechnology, Vol. 117, No. 3, pp. 309-321, 2005. [38] Don W. Green, R.H.P., Perry Chemical Engineers' Handbook. 1997. | ||
آمار تعداد مشاهده مقاله: 372 تعداد دریافت فایل اصل مقاله: 243 |