تعداد نشریات | 44 |
تعداد شمارهها | 1,312 |
تعداد مقالات | 16,132 |
تعداد مشاهده مقاله | 52,721,632 |
تعداد دریافت فایل اصل مقاله | 15,388,712 |
مطالعه تأثیر روشهای مختلف خشک کردن و نوع حلال بر سینتیک استخراج ترکیبات فنولی از غلاف نخود فرنگی و بررسی فعالیت ضد رادیکالی آن | ||
پژوهش های صنایع غذایی | ||
مقاله 3، دوره 29، شماره 2، مرداد 1398، صفحه 29-45 اصل مقاله (1.25 M) | ||
نوع مقاله: مقاله پژوهشی | ||
نویسندگان | ||
علی گنجلو* 1؛ ماندانا بی مکر1؛ مسعود قربانی2 | ||
1گروه علوم و مهندسی صنایع غذایی، دانشکده کشاورزی، دانشگاه زنجان | ||
2مواد غذایی، گروه علوم و مهندسی صنایع غذایی، دانشکده کشاورزی، دانشگاه زنجان | ||
چکیده | ||
زمینه مطالعاتی: استخراج ترکیبات فنولی از منابع ارزان قیمت خصوصا محصولات جانبی و ضایعات صنایع فرآوری مواد غذایی از اهمیت بالایی برخوردار است. هدف: این پژوهش به منظور بررسی تاثیر روشهای مختلف خشک کردن و نوع حلال بر سینتیک استخراج ترکیبات فنولی از غلاف نخود فرنگی انجام شد. روش کار: غلاف نخود فرنگی به روشهای خشک کردن در سایه، هوای داغ (ºC50 و70) و انجمادی خشک شد و ترکیبات فنولی بهروش غرقابی با استفاده از حلالهای آب، استون، اتانول و هگزان استخراج گردید. از شناساگر فولین – سیکالتیو برای اندازه گیری محتوای ترکیبات فنولی کل و از روشهای مهار رادیکالهای آزاد 1،1- دیفنیل- 2- پیکریل هیدرازیل (DPPH) و هیدروژن پراکسید برای ارزیابی فعالیت ضد رادیکالی استفاده شد. سینتیک استخراج ترکیبات فنولی غلاف نخود فرنگی با استفاده از مدلهای سینتیکی قابل برازش مورد مطالعه قرار گرفت. نتایج: روش خشک کردن و نوع حلال تأثیر بسزایی بر میزان استخراج ترکیبات فنولی داشت. دادههای آزمایشگاهی با در نظر گرفتن حداکثر ضریب همبستگی، حداقل ریشه میانگین مربعات خطا و مدول میانگین انحراف نسبی به خوبی با مدل پلگ برازش شدند. مقدار ترکیبات فنولی در دامنه 44/14-22/0 میلیگرم معادل اسید گالیک بر گرم عصاره بهدست آمد. بر اساس مدل پلگ، کمترین مقدار ثابت سرعت پلگ برای نمونههای خشک شده به روش انجمادی و استفاده از اتانول بهدست آمد که نشانگر سرعت بالاتر انتقال جرم است. حداکثر فعالیت ضد رادیکالی عصارههای فنولی غلاف نخود فرنگی معادل 48/85% برای مهار رادیکالهای آزاد DPPH و 51/14% برای هیدروژن پراکسید بود. رابطه خطی با ضریب همبستگی بالا (80/0-70/0) بین محتوای فنولی کل و فعالیت مهار کنندگی رادیکالهای آزاد بهدست آمد. نتیجهگیری نهایی: غلاف نخود فرنگی را میتوان به عنوان یک منبع ارزان قیمت برای استحصال ترکیبات فنولی به منظور استفاده در صنایع غذایی و دارویی معرفی نمود. روش آماده سازی و نوع حلال تاثیر چشمگیری بر استخراج ترکیبات فنولی غلاف نخود فرنگی دارند. از مدل پلگ میتوان برای بررسی سینتیک انتقال جرم حین فرایند استخراج ترکیبات فنولی استفاده نمود. | ||
کلیدواژهها | ||
استخراج؛ ترکیبات فنولی؛ سینتیک انتقال جرم؛ غلاف نخود فرنگی؛ فعالیت ضد رادیکالی | ||
مراجع | ||
خانلری ف، یاسینی اردکانی س ع و نصیری زاده ن، 1395. بهینه سازی استخراج ترکیبات فنولی و آنتی اکسیدانی میوه گیاه تاجریزی با استفاده از روش سطح پاسخ. مجله علوم غذایی و تغذیه، 13، 98-87. قربانی م، گنجلو ع و بی مکر م، 1396. بررسی اثر حلالهای مختلف بر محتوای فنلی کل و فعالیت ضد اکسایشی عصاره غلاف نخود فرنگی. علوم وصنایع غذایی ایران، 14، 92-83. نوروزی ع، بی مکر م، گنجلو ع و زرین قلمی س، 1397. تأثیر پیش تیمار خیساندن بر سینتیک استخراج ترکیبات زیست فعال فنولی از برگ گیاه زولنگ (Eryngium caucasicum Trautv) به کمک امواج فراصوت. نشریه پژوهشهای صنایع غذایی، 28(4)، 181-169. Abid Y, Azabou S, Jridi M, Khemakhem I, Bouaziz M and Attia H, 2017. Storage stability of traditional Tunisian butter enriched with antioxidant extract from tomato processing by-products. Food Chemistry 233: 476-482. Amarowicz, R and Troszyñska A, 2003. Antioxidant activity of extract of pea and its fractions of low molecular phenolics and tannins. Polish Journal of Food and Nutrition Sciences 12:10–15. Amendola D, De Faveri DM and Spigno DF, 2010. Grape marc phenolics: Extraction kinetics, quality and stability of extracts. Journal of Food Engineering 97: 384-392. Amin I, Zamaliah MM and Chin WF, 2004. Total antioxidant activity and phenolic content in selected vegetables. Food Chemistry 87: 581-586. Bucic-Kojic A, Planinic M, Tomas S, Bilic M and Velic D, 2007. Study of solid-liquid extraction kinetics of total polyphenols from grape seeds. Journal of Food Engineering 81: 236-242. Chirinos R, Rogez H, Camposa D, Pedreschi R and Larondelle Y, 2007. Optimization of extraction conditions of antioxidant phenolic compounds from Mashua Tubers. Seperation and Purification Technology 55: 217-225. Chung YC, Chiang BH, Wei JH, Wang CK, Chen PC and Hsu CK, 2008. Effects of blanching, drying and extraction processes on the antioxidant activity of yam (Dioscorea alata). International Journal of Food Science and Technology 83: 859-864. Diouf PN, Stevanovic T and Cloutier A, 2009. Study on chemical composition, antioxidant and anti-inflammatory activities of hot water extract from Picea mariana bark and its proanthocyanidin-rich fractions. Food Chemistry 113: 897-902. Garcia-Perez JV, García-Alvarado MA, Carcel JA and Mulet A, 2010. Extraction kinetics modeling of antioxidants from grape stalk (Vitis vinifera var. Bobal): Influence of drying conditions. Journal of Food Engineering 101: 49-58. Galván D’Alessandro L, Krasimir Dimitrov K, Vauchel P and Nikov I, 2014. Kinetics of ultrasound assisted extraction ofanthocyanins from Aronia melanocarpa (black chokeberry) wastes. Chemical Engineering Research and Design 92: 1818–1826. Haymanti SH, Alok P, Venkat kS, Manimegalai S and Devi Rajeswari V, 2014. Evaluation of antioxidant activity of Pisum sativum (pod and grain) and detection of its bioactive compounds by GC-MS analysis. Der Pharmacia Lettre 6: 359-365. Jayaprakasha GK, Selvi T and Sakariah KK, 2003. Antibacterial and antioxidantactivities of grape (Vitis vinifera) seed extracts. Food Research International 36: 117-122. Khorasani Esmaeili A, Mat Taha R, Mohajer S and Banisalam B, 2015. Antioxidant activity and total phenolic and flavonoid content of various solvent extracts from in vivo and in vitro grown Trifolium pratense L. (Red Clover). BioMedical Research International 1-11. Kitanovic S, Milenovic D and Veljkovic VB, 2008. Empirical kinetic models for the resinoid extraction from aerial parts of St. John’s wort (Hypericum perforatum L.). Biochemical Engineering Journal 41: 1-11. Koffi E, Sea T, Dodehe Y and Soro S. 2010. Effect of solvent type on extraction of polyphenols from twenty three Ivorian plants. Journal of Animal & Plant Sciences 5: 550- 558. Lim YY and Murtijaya J, 2007. Antioxidant properties of Phyllanthus amarus extracts as affected by different drying methods. LWT- Food Science and Technology 40: 1664-1669. Lin C, Guobin Xia G and Liu S, 2017. Modeling and comparison of extraction kinetics of 8 catechins, gallic acid and caffeine from representative white teas. LWT - Food Science and Technology 83: 1-9. Manzocco L, Anese M and Nicoli MC, 1998. Antioxidant properties of tea extracts as affected by processing. Lebensmittel-Wissenschaft & Technologie 31: 694-698. Moure A, Cruz, JM, Franco D, Domínguez JM, Sineiro J, Domínguez H, Núnez MJ and Parajó JC, 2001. Natural antioxidants from residual sources. Food Chemistry 72: 145-171. Mustapa AN, Martin A, Gallego JR, Mato RB and Cocero MJ, 2015. Microwave-assisted extraction of polyphenols from Clinacanthus nutans Lindau medicinal plant: Energy perspective and kinetics modeling. Chemical Engineering and Processing 97: 66–74. Oomah BD, Caspar F, Malcolmson LJ and Bellido A-S, 2011. Phenolics and antioxidant activity of lentil and pea hulls. Food Research International 44: 436-441. Pradal D, Vauchel P, Decossin S, Dhulster P and Dimitrov K, 2016. Kinetics of ultrasound-assisted extraction of antioxidant polyphenols from food by-products: Extraction and energy consumption optimization. Ultrasonics Sonochemistry 32: 137–146. Peleg M, 1988. An empirical model for the description of moisture sorption curves. Journal of Food Science 53: 1216-1219. Pinelo M, Sineiro J and Núñez MJ, 2006. Mass transfer during continuous solid-liquid extraction of antioxidants from grape by products. Journal of Food Engineering 77: 57-63. Planinić M, Aliakbarian B, Perego P, Greganić K, Tomas S and Bucić-Kojić A, 2015. Influence of temperature and drying time on extraction yield of phenolic compounds from grape pomace variety “Portogizac”. Chemical and Biochemical Engineering Quarterly 29: 343–350. Poojary MM and Passamonti P, 2015. Extraction of lycopene from tomato processing waste: Kinetics and modelling. Food Chemistry 173: 943–950. Razali N, Mat-Junit S, Abdul-Muthalib AF, Subramaniam S and Abdul-Aziz A, 2012. Effects of various solvents on the extraction of antioxidant phenolics from the leaves, seeds, veins and skins of Tamarindus indica L. Food Chemistry 131: 441-448. Ruch RJ, Cheng SJ and Klaunig JE, 1989. Prevention of cytotoxicity and inhibition of intercellular communication by antioxidant catechins isolated from Chinese green tea. Carcinogensis 10: 1003-1008. Samavati V and Manoochehrizade A, 2013. Polysaccharide extraction from Malva sylvestris and its anti-oxidant activity. International Journal of Biological Macromolecules 60: 427- 436. Samoticha J, Wojdyło A and Lech K, 2016.The influence of different the drying methods on chemical composition and antioxidant activity in chokeberries. LWT - Food Science and Technology 66: 484-489. Sant’Anna V, Brandelli A, Marczak LDF and Tessaro IC, 2012. Kinetic modeling of total polyphenol extraction from grape marc and characterization of the extracts. Seperation and Purification Technology 100: 82-87. Segovia F, Luengo E, Corral-Pérez J, Raso J and Almajano MP, 2015. Improvements in the aqueous extraction of polyphenols from borage (Boragoofficinalis L.) leaves by pulsed electric fields: pulsed electric fields (PEF) applications. Industrial Crops and Products 65: 390-396. Segovia FJ, Corral-Pérez JJ, and Almajano MP, 2016. Avocado seed: Modeling extraction of bioactive compounds. Industrial Crops and Products 85: 213-220. Silva EM, Souza JNS, Rogez H, Rees JF and Larondelle Y, 2006. Antioxidant activities and polyphenolic contents of fifteen selected plant species from the Amazonian region. Food Chemistry 101: 1012-1018. Soares MO, Alves RC, Pires PC, Oliveira MB and Vinha AF, 2013. Angolan Cymbopogon citratus used for therapeutic benefits: Nutritional composition and influence of solvents in phytochemicals content and antioxidant activity of leaf extracts. Food Chemical Toxicology 60: 413–418. Thuy Pham HN, Nguyen VT, Vuong QV, Bowyer MC and Scarlett CJ, 2015. Effect of extraction solvents and drying methods on the physicochemical and antioxidant properties of Helicteres hirsuta Lour. leaves. Technologies 3: 285-301. Tusek AJ, Benkovic M, Cvitanovic AB, Valinger D, Jurina T and Kljusuri JG, 2016. Kinetics and thermodynamics of the solid-liquid extraction process of total polyphenols, antioxidants and extraction yield from Asteraceae plants. Industrial Crops and Products 91: 205–214. Valadez-Carmona L, Plazola-Jacinto CP, Hernández-Ortega M, Hernández-Navarro MD, Villarreal F, Necoechea-Mondragón H, Ortiz-Moreno A and Ceballos-Reyese G, 2017. Effects of microwaves, hot air and freeze-drying on the phenolic compounds, antioxidant capacity, enzyme activity and microstructure of cacao pod husks (Theobroma cacao L.). Innovative Food Science and Emerging Technologies 41: 378–386. Wardatun S, Rustiani E, Alfiani N and Rissani D, 2017. Study Effect Type of extraction method and type of solvent to cinnamaldehyde and trans-cinnamic acid dry extract cinnamon (Cinnamomum burmanii [Nees & T, Nees]Blume). Journal of Young Pharmacists 9: 49-51. Vetal MD, Lade VG and Rathod VK, 2012. Extraction of ursolic acid from Ocimum sanctum leaves: Kinetics and modeling. Food and Bioproduct Processing 90: 793-798. Zarnowski R and Suzuki Y, 2004. Expedient soxhlet extraction of resorcinolic lipids from wheat grains. Journal of Food Composition and Analysis 17: 649–663. | ||
آمار تعداد مشاهده مقاله: 604 تعداد دریافت فایل اصل مقاله: 558 |