تعداد نشریات | 44 |
تعداد شمارهها | 1,303 |
تعداد مقالات | 16,020 |
تعداد مشاهده مقاله | 52,489,877 |
تعداد دریافت فایل اصل مقاله | 15,217,426 |
An extended complete Chebyshev system of 3 Abelian integrals related to a non-algebraic Hamiltonian system | ||
Computational Methods for Differential Equations | ||
مقاله 4، دوره 6، شماره 4، دی 2018، صفحه 438-447 اصل مقاله (393.49 K) | ||
نوع مقاله: Research Paper | ||
نویسندگان | ||
Pegah Moghimi1؛ Rasoul Asheghi1؛ Rasool Kazemi* 2 | ||
1Department of Mathematical Sciences, Isfahan University of Technology, Isfahan, Iran, 84156-83111 | ||
2Department of Mathematical Sciences, University of Kashan, Kashan, Iran, 87317-53153 | ||
چکیده | ||
In this paper, we study the Chebyshev property of the 3-dimentional vector space $E =\langle I_0, I_1, I_2\rangle$, where $I_k(h)=\int_{H=h}x^ky\,dx$ and $H(x,y)=\frac{1}{2}y^2+\frac{1}{2}(e^{-2x}+1)-e^{-x}$ is a non-algebraic Hamiltonian function. Our main result asserts that $E$ is an extended complete Chebyshev space for $h\in(0,\frac{1}{2})$. To this end, we use the criterion and tools developed by Grau et al. in \cite{Grau} to investigate when a collection of Abelian integrals is Chebyshev. | ||
کلیدواژهها | ||
Non-algebraic Hamiltonian؛ Abelian integral؛ Chebyshev property؛ ECT-system | ||
آمار تعداد مشاهده مقاله: 478 تعداد دریافت فایل اصل مقاله: 368 |