تعداد نشریات | 44 |
تعداد شمارهها | 1,303 |
تعداد مقالات | 16,020 |
تعداد مشاهده مقاله | 52,489,461 |
تعداد دریافت فایل اصل مقاله | 15,216,999 |
An improved pseudospectral approximation of generalized Burger-Huxley and Fitzhugh-Nagumo equations | ||
Computational Methods for Differential Equations | ||
مقاله 2، دوره 6، شماره 3، مهر 2018، صفحه 280-294 اصل مقاله (2.19 M) | ||
نوع مقاله: Research Paper | ||
نویسندگان | ||
Avinash Mittal* 1؛ Lokendra Balyan1؛ Dheeraj Tiger2 | ||
1Discipline of Mathematics, IIITDM Jabalpur, Madhya Pradesh 482005, India | ||
2Department of Mathematics, Rajdhani College, University of Delhi, India | ||
چکیده | ||
In this research paper, an improved Chebyshev-Gauss-Lobatto pseudospectral approximation of nonlinear Burger-Huxley and Fitzhugh- Nagumo equations have been presented. The method employs chebyshev Gauss-Labatto points in time and space to obtain spectral accuracy. The mapping has introduced and transformed the initial-boundary value non-homogeneous problem to homogeneous problem. The main problem is reduced to a system of algebraic equations. This system is solved by standard numerical method. Numerical results for various cases of Generalized Burger-Huxley equation and other example of Fitzhugh- Nagumo equation are presented to demonstrate the performance and effectiveness of the method. Finaly, a comparison of our method with existing other methods available in literature are also given. | ||
کلیدواژهها | ||
Generalized Burger-Huxley equation؛ Fitzhugh-Nagumo(FN) equation؛ Pseudospectral method؛ Chebyshev-Gauss-Lobbato points | ||
آمار تعداد مشاهده مقاله: 441 تعداد دریافت فایل اصل مقاله: 526 |