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Abstract In this paper, an improved Chebyshev-Gauss-Lobatto pseudospectral approxima-

tion of nonlinear Burger-Huxley and Fitzhugh-Nagumo (FN) equations have been
presented. The spectral method has been employed in time and space based upon

Chebyshev Gauss-Labatto points and achieved spectral accuracy. A mapping has

used to transform the initial-boundary value non-homogeneous problems to homo-
geneous problems and finally it reduced to a system of algebraic equations, which

has solved by standard numerical method. Numerical results for various cases of
generalized Burger-Huxley equation and other examples of Fitzhugh-Nagumo equa-

tion have presented to demonstrate the performance and effectiveness of the method.

Comparison of the method with existing other methods, available in literature, are
also given.
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1. Introduction

Our contribution in this paper is to propose the improved Chebyshev pseudospec-
tral method in both space and time for nonlinear generalized one dimensional partial
differential equation

Ut + q1(t)Ux − q2(t)Uxx + q3(t)(φ(U))x − q4(t)ϕ(U) = 0,

x ∈ [ξ, η] and t ∈ [0, T ], (1.1)
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where φ(U) and ϕ(U) are some nonlinear functions and q1(t), q2(t), q3(t) and q4(t) are
arbitrary real valued functions of t. Initial condition and boundary conditions are

U(x, 0) = f̃(x), x ∈ [ξ, η],

and

U(ξ, t) = g̃1(t), t ∈ [0, T ],

U(η, t) = g̃2(t), t ∈ [0, T ],

respectively.

1.1. Generalized Burger-Huxley equation. Let us take q1(t) = 0, q2(t) = q3(t) =
1, q4(t) = β, φ(U) = γ

δ+1U
δ+1 and ϕ(U) = U(1 − U δ)(Uδ − σ) then equation (1.1)

is called nonlinear generalized Burger-Huxley equation which describe the relation of
reaction, convection and diffusion term. Here γ is advection coefficient, β is a re-
action coefficient, δ ≥ 1 is a positive number and σ ∈ (0, 1). These equations have
been investigated by numerous authors, some numerical approximation methods are
listed as follows, Adomian-decomposition method [15], iterative differential quadra-
ture method [27], compact finite difference method [25], Haar wavelet approach [7] and
varitional iteration method [2]. Numerical solutions for generalized Burger’s-Huxley
equation using mixed collocation and finite difference scheme have been presented in
[10]. A meshless method for numerical solutions of the generalized Burger’s-Huxley
equation have been discussed in [13, 19]. In this work, they explained method based
on scattered nodes instead of mesh in the domain. Mohammadi [22] proposed colloca-
tion B-spline method to obtained the numerical solutions of the generalized Burger’s-
Huxley equation. If φ(U) = 0, the equation (1.1) will reduce to Huxley equation [31]
and describes wall motion in liquid crystal and nerve fibers [32, 16].

1.2. Fitzhugh-Nagumo equation. When φ(U) = 0, and ϕ(U) = U(U −σ)(1−U)
then equation (1.1) is called nonlinear Fitzhugh-Nagumo (FN) partial differential
equation. This is a special case of the Burgers-Huxley equation and introduced by
Fitzhugh [12] and Nagumo et al. [23]. Many mathematicians and physicists have
studied this equation and used in various applications such as logistic population
growth, branching brownian motion process, neurophysiology, nuclear reactor theory
and chemical reaction [5]. In past, the number of methods for the numerical solution
of Fitzhugh-Nagumo equation have presented, such as conditional symmetry method
[26], homotopy analysis method [30], Jacobi-Gauss-Lobatto collocation method [3],
Semi-explicit finite-difference method [8] and Haar wavelet method [14]. Li and Guo
[20] presented new exact solution for FN equation using integral method for obtain-
ing exact solution of FN equation. Triki and Wazwaz [29] have introduced specific
solitary wave ansatz and the tanh method for generalized Fitzhugh-Nagumo equation
and presented new type of existence and uniqueness of soliton solutions.

There are number of practical problems exist in engineering and mathematical
physics which do not have exact solution. Therefore, high order approximation meth-
ods are always attraction among the researchers. Spectral method [6, 24, 28, 4] is a
high order method to obtain numerical approximations for linear and nonlinear partial
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differential equations. Broadly the method has classified into two categories, interpo-
lation and non-interpolation. The collocation method is depends upon interpolation
approach, which is called pseudospectral method also. To the best of authors knowl-
edge, pseudospectral method in both time and space for generalized Burger-Huxley
and Fitzhugh-Nagumo equations have not reported by any other researcher.

This research paper is organized as follows. In section 2, discretization of the
improved pseudospectral method based on CGL points in both space and time is
given. In section 3, some numerical examples have been presented and also accuracy
and efficiency of the proposed method is given. Finally, the conclusion of our scheme
is given in section 4.

2. Discretization

In this section, we present the pseduospectral method based on CGL points in
both space and time to approximate the solutions. We use linear transformations
x −→ η−ξ

2 x+ η+ξ
2 and t −→ T

2 t+
T
2 to transform the given space interval x ∈ [ξ, η] and

time interval t ∈ [0, T ] into new interval [−1, 1], respectively. Accordingly Equation
(1.1) is transformed as follows

Ut +
T

η − ξ
q1(t)Ux −

2T

(η − ξ)2
q2(t)Uxx +

T

η − ξ
q3(t)(φ(U))x −

T

2
q4(t)ϕ(U) = 0, x ∈ [−1, 1] and t ∈ [−1, 1], (2.1)

with initial condition

U(x,−1) = f(x), x ∈ [−1, 1],

and boundary conditions

U(−1, t) = g1(t), U(1, t) = g2(t), t ∈ [−1, 1].

The above initial and boundary conditions of the resulting problem are non-homogeneous,
which will be reduced to homogeneous using the following mapping

Υ(x, t) =
1− t

2
f(x) +

1− x
2

g1(t) +
1 + x

2
g2(t)− (1− t) (1− x)

4
g1(−1)

− (1− t) (1 + x)

4
g2(−1).

(2.2)

Further we define a new variable V (x, t) to represent the equation (2.1),

V (x, t) = U(x, t)−Υ(x, t). (2.3)

Using Equation (2.3) in (2.1), the homogeneous initial and boundary value problem are as
follows

(V + Υ)t +
T

η − ξ (q1(t)(V + Υ)x + q3(t)(φ(V + Υ))x)

− 2T

(η − ξ)2
q2(t)(V + Υ)xx −

T

2
q4(t)ϕ(V + Υ) = 0. (2.4)
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We seek a spectral approximation V a, which can be used to approximate the solution of
nonlinear differential equations, of the form:

V a(x, t) =

M∑
i=0

M∑
j=0

Ψi(x)Ψj(t) V
a
ij , (2.5)

here the trial functions Ψi(x) and Ψj(t) are the M th degree Lagrange polynomials with space
and time variables respectively, where CGL points are defined by

(xi) = − cos(iπ/M)Mi=0, (tj) = − cos(jπ/M)Mj=0. (2.6)

Partial derivatives of the approximate solution at the collocation points (xn, tm) are com-
puted as

∂r

∂xr
(V a(xn, tm)) =

M∑
i=0

M∑
j=0

Ψ
(r)
i (xn)Ψj(tm) V aij =

M∑
i=0

M∑
j=0

H
(r)
in Ψj(tm) V aij ,

=
([
H

(r)

[0:M,n] ⊗Ψ(tm)
])T

V a, (2.7)

∂s

∂ts
(V a(xn, tm)) =

M∑
i=0

M∑
j=0

Ψi(xn)Ψ
(s)
j (tm) V aij =

M∑
i=0

M∑
j=0

Ψi(xn)H
(s)
jm V aij ,

=
([

Ψ(xn)⊗H(s)

[0:M,m]

])T
V a, (2.8)

where

Ψ(xn) = [Ψ0(xn),Ψ1(xn), ...,ΨM (xn)]T , Ψ(tm) = [Ψ0(tm),Ψ1(tm), ...,ΨM (tm)]T ,

and V a is a vector defined by

V a = [V a00, ..., V
a
0M , V

a
10, ..., V

a
1M , ..., V

a
M0, ..., V

a
MM ]T .

H(s) [9] represents as sth-order Chebyshev differentiation matrix and ⊗ represent the Kro-
necker product of two vectors.
From Equation (2.7) and (2.8), Equation (2.4) at the CGL points, we obtain([

Ψ(xn)⊗H(1)

[0:M,m]

]T)
V a + (Υnm)t −

2T

(η − ξ)2
q2(tm)

([
H

(2)

[0:M,n] ⊗Ψ(tm)
]T
V a + (Υnm)xx

)
+

T

η − ξ

[[
H

(1)

[0:M,n] ⊗Ψ(tm)
]T

(q1(tm)V a + q3(tm)φ((V anm + Υnm))xV
a) + q1(tm)(Υnm)x

]
−T

2
q4(tm) [ϕ((V anm + Υnm))] = 0,

where Υnm = Υ(xn, tm).

Apply the method at all CGL points in both time and space direction and using initial
and boundary conditions i.e.Ψ0(xi) = ΨM (xi) = Ψ0(tj) = 0 ∀ (i, j), the above equation
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reduced in system of M × (M − 1) nonlinear algebraic equations.([
IM−1 ⊗H(1)

[1:M,1:M ]

]T)
V a + P1 −

2T

(η − ξ)2
(IM−1 ⊗ Iq2)

([
H

(2)

[1:M−1,1:M−1] ⊗ IM
]T
V a +Q

)
+

T

η − ξ

[[
H

(1)

[1:M−1,1:M−1] ⊗ IM
]T

((IM−1 ⊗ Iq1)V a + (IM−1 ⊗ Iq3) IR1V
a) + (IM−1 ⊗ Iq1)P2

]
−T

2
(IM−1 ⊗ Iq1)R2 = 0,

where

V a = [V a11, ..., V
a
1M , V

a
21, ..., V

a
2M , ..., V

a
(M−1)1, ..., V

a
(M−1)M ]T ,

P1 = [Υt(x1, t1), . . . ,Υt(x1, tM ) | . . . | Υt(xM−1, t1), . . . ,Υt(xM−1, tM )]T ,

P2 = [Υx(x1, t1), . . . ,Υx(x1, tM ) | . . . | Υx(xM−1, t1), . . . ,Υx(xM−1, tM )]T ,

Q = [Υxx(x1, t1), . . . ,Υxx(x1, tM ) | . . . | Υxx(xM−1, t1), . . . ,Υxx(xM−1, tM )]T ,

q1 =[q1(t1), q1(t2), ..., q1(tM )]T , q2 = [q2(t1), q2(t2), ..., q2(tM )]T ,

q3 =[q3(t1), q3(t2), ..., q3(tM )]T , q4 = [q4(t1), q4(t2), ..., q4(tM )]T ,

R1 =
[
φ((V

a
11 + Υ11))x, . . . , φ((V

a
1M + Υ1M ))x | . . . | φ((V

a
(M−1)1 + Υ(M−1)1))x, . . . , φ((V

a
(M−1)M + Υ(M−1)M ))x

]T
,

R2 =
[
ϕ((V

a
11 + Υ11)), . . . , ϕ((V

a
1M + Υ1M )) | . . . | ϕ((V

a
(M−1)1 + Υ(M−1)1)), . . . , ϕ((V

a
(M−1)M + Υ(M−1)M ))

]T
,

and Iqi , ∀ i = 1, 2, 3, 4 represents the values of qi in form of diagonal matrix.

3. Numerical results and discussion

In this section, we consider examples to obtain approximate solutions of generalized
Burger-Huxley and time dependent Fitzhugh-Nagumo equations and demonstrate the L∞-
norm and relative errors in L2- norm, which are defined by

L∞ = ‖Ua − U ‖∞ = max
n,m

|Ua(xn, tm)− U (xn, tm)|,

and

L2 =

(∑M
n=0

∑M
m=0 [Ua(xn, tm)− U(xn, tm)]2∑M
n=0

∑M
m=0 [U (xn, tm)]2

) 1
2

,

where Ua and U are spectral approximations and the analytical solutions, respectively.

Example 1. Let us take generalized Burger-Huxley equation i.e. q1(t) = 0, q2(t) = q3(t) =
1, q4(t) = β, φ(U) = γ

δ+1
Uδ+1 and ϕ(U) = U(1− Uδ)(Uδ − σ).

Here β, γ, σ ≥ 0 are given real parameters and δ is a positive integer.
Initial condition and boundary conditions are

U(x, 0) = [0.5σ + 0.5σ tanh (τ1x)]
1
δ , x ∈ [ξ, η], (3.1)

and

U(ξ, t) = [0.5σ + 0.5σ tanh (τ1 (ξ − τ2t))]
1
δ , (3.2)

U(η, t) = [0.5σ + 0.5σ tanh (τ1 (η − τ2t))]
1
δ , (3.3)
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respectively. The exact solution of this problem is [19]

U(x, t) = [0.5σ + 0.5σ tanh (τ1 (x− τ2t))]
1
δ , (3.4)

where τ1 =
−γδ+δ

√
γ2+4β(1+δ)

4(1+δ)
σ and τ2 = γσ

1+δ
− (1+δ−σ)(−γ+

√
γ2+4β(1+δ))

2(1+δ)
.

We now consider different value of the parameters (γ, β, δ, σ) for numerical experiments.

Case 1.1: Let us take γ = β = δ = 1 and σ = 0.5. For this case, numerical results have
computed for different time intervals T = 15, 30, 60 and 120 and shown in Figure 1. Also
obtained tabulated results for the proposed method and compairison with [21] have shown
in Table 1. For the values γ = β = δ = 1 and σ = 2. Figure 2 contains 3D surface plots, one
for numerical solution and other for analytical solution, at time T = 10 and space domain
[−10, 20]. These 3D plots also depict the exactness of method.

Case 1.2: Let us take γ = β = 1 and σ = 0.001. Numrical results have computed with
different value of δ, namely δ = 1, 4, 8 for time interval T = 0.2 and T = 1. The compari-
son of the proposed method with existing methods available in the literature have shown in
Table 2. Figure 3 has shown plot of numerical solution and exact solution at different times
intervals, namely T = 0.01, 1.0, 5.0, 10.0 and space domain [−10, 20].

Case 1.3: Let us take γ = 0.1, β = 0.001 and σ = 0.0001. In this problem, numerical so-
lutions have computed with different value of δ, namely δ = 1, 4, 8 and time interval T = 0.2
and T = 1 in Table 3 and can be seen clearly the accuracy of the proposed method with
existing methods. The numerical solutions for δ = 4, 8 at T = 1 are plotted in Figure 4.

Case 1.4: Let us consider γ = 5, δ = 1, σ = 0.00001 and different values of β, namely
β = 1, 10, 100. In this problem, numerical solutions have obtained for time interval T = 0.3
and T = 0.9 and the comparison of the proposed method with existing methods have shown
in Table 4. In Figure 5, the 3D curves of numerical solutions are plotted for time interval
T = 0.3, 0.9 and β = 100. Numerical results by proposed method obtained spectral accuracy
and better as compare to existing methods.

Table 1. Comparison of proposed method with existing method for
case 1.1.

Proposed
Method

Mittal [21]

M t L∞ L2 L∞ L2

16 15 4.474e-08 1.291e-07 2.832e-07 4.079e-07
30 7.739e-08 1.248e-07 1.635e-07 3.216e-07
60 3.453e-08 3.288e-07 1.589e-07 2.953e-07
120 2.128e-08 7.229e-08 6.943e-08 1.157e-07
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Figure 1. Numerical solutions of case 1.1 for (a) T = 15, (b) T =
30, (c) T = 60 and (d) T = 120 at γ = β = δ = 1 and σ = 0.5.
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Figure 2. Numerical and exact solutions of case 1.1 for γ = β =
δ = 1, σ = 2 at T = 10.

0 2 4 6 8 10

−10
0

10
20

0

0.5

1

1.5

2

tx

N
u

m
e

r
ic

a
l 
S

o
lu

ti
o

n

0 2 4 6 8 10

−10
0

10
20

0

0.5

1

1.5

2

tx

E
x
a

c
t 
S

o
lu

ti
o

n
Figure 3. Numerical and exact solutions of case 1.2 for γ = β =
δ = 1, σ = 0.001 at different T .
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Figure 4. Numerical solutions of case 1.3 for γ = 0.1, β = 0.001, σ =
0.0001 and time T = 1 at (a) δ = 4 and (b) δ = 8.
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Figure 5. Numerical solutions of case 1.4 for γ = 5, β = 100, δ = 1
and σ = 0.00001 at (a) T = 0.3 and (b) T = 0.9.
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Table 2. Comparison of proposed method with existing methods
for case 1.2.

Proposed
Method

Javidi and
Golbabai
[17]

Zhang et al.
[33]

Mittal[21]

T δ L∞ L∞ L∞ L∞

0.2 1 6.6183e-09 4.0138e-08 3.7715e-08 3.7487e-08
4 3.6398e-06 1.3139e-05 1.2346e-05 1.2270e-05
8 8.7319e-06 3.5540e-05 3.3394e-05 3.3191e-05

1 1 9.2500e-09 4.6849e-08 4.3912e-08 4.2939e-08
4 2.3396e-06 1.5325e-05 1.4366e-05 1.4045e-05
8 1.2209e-06 4.1407e-05 3.8818e-05 3.7949e-05

Table 3. Comparison of proposed method with existing methods
for case 1.3.

Proposed
Method

Javidi and
Golbabai
[17]

Duan et al.
[11]

Mittal [21]

T δ L∞ L∞ L∞ L∞

0.2 1 5.5845e-14 2.9927e-13 2.7503e-13 5.7293e-13
4 9.2422e-11 5.5795e-10 5.1183e-10 1.0662e-10
8 5.7721e-11 2.0759e-09 1.8988e-09 3.9555e-09

1 1 1.5885e-13 3.1427e-13 3.4050e-13 2.8645e-13
4 3.3183e-11 6.0028e-10 6.3366e-10 5.3309e-10
8 3.4687e-10 2.1951e-09 2.3507e-09 1.9776e-09

Table 4. Comparison of proposed method with existing methods
for case 1.4.

Proposed
Method

Javidi and
Golbabai
[17]

Duan et al.
[11]

Mittal [21]

T β L∞ L∞ L∞ L∞

0.3 1 1.5366e-12 3.1632e-12 2.8782e-12 8.0197e-12
10 2.1259e-11 3.9762e-11 3.6179e-11 1.0080e-11
100 5.5659e-10 5.0392e-10 4.5851e-10 1.2775e-10

0.9 1 4.4230e-12 3.3411e-12 2.8819e-12 2.4059e-12
10 2.2682e-11 4.1998e-11 3.6226e-11 3.0242e-11
100 1.8593e-10 5.3225e-10 4.5911e-10 3.8327e-10
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Table 5. Comparison of the proposed method with differential
quadrature method for example 2 at different time T with σ = 0.75.

¸

Proposed Method Jiwari et al. [18]

T L∞ L2 L∞ L2

0.2 7.488e-07 7.547e-07 1.2350e-05 4.5670e-05
0.5 5.584e-07 5.489e-07 5.1986e-04 5.6423e-05
1.0 4.897e-07 8.691e-06 6.3283e-04 8.1671e-05
1.5 9.242e-06 7.278e-06 8.5383e-04 2.3681e-04
2.0 5.772e-06 9.471e-06 9.9123e-04 3.0123e-04
5.0 3.469e-06 7.666e-05 1.7904e-04 5.3420e-04
10.0 2.590e-06 5.165e-05 3.3551e-03 7.8900e-04

Example 2. Let us take time dependent Fitzhugh-Nagumo equation i.e. φ(U) = 0, q1(t) =
q2(t) = cos(t), q4(t) = 2 cos(t) and ϕ(U) = U(U − σ)(1− U). Here σ is a given parameter.
Initial condition and boundary conditions are

U(x, 0) =
σ

2
+
σ

2
tanh

(σx
2

)
, x ∈ [ξ, η], (3.5)

and

U(ξ, t) =
σ

2
+
σ

2
tanh

(σ
2

(ξ − (3− σ) sin(t))
)
, (3.6)

U(η, t) =
σ

2
+
σ

2
tanh

(σ
2

(η − (3− σ) sin(t))
)
, (3.7)

respectively. The exact solution of this problem is [3, 29]

U(x, t) =
σ

2
+
σ

2
tanh

(σ
2

(x− (3− σ) sin(t))
)
. (3.8)

In this example, if parameter σ = 3 then the analytical solutions moving only space direction
and independent of time direction which has shown in Figure 6. Figures 7 and 8 have shown
numerical solution and analytical solution for σ = 0.5 and σ = 0.75, respectively in 3D
surface plots at time T = 1. Figure 9 has shown 2D plot of numerical and exact solution
for σ = 0.75 at different times T = 0.2, 0.5, 1.0, 2.0, 3.0, 5.0. Table 5 shows numerical results
of proposed method and comparison with differential quadrature method for σ = 0.75 at
different time intervals.

4. Conclusion

In this research paper, we have proposed improved time-space pseudospectral method
for numerical solution of generalized Burger-Huxley and time dependent Fitzhugh-Nagumo
equations. The proposed scheme is based on pointwise discretzation of delta function based
on lagrange polynomial. The performance of the method has shown using numerical examples
and studied various cases. All computed results have shown very good agreement with the
exact solutions and comparison of our results with existing results have shown in the paper.
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Figure 6. Numerical solution of example 2 for σ = 3 at T = 5.
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Figure 7. Numerical and exact solutions of example 2 for σ = 0.5
at T = 1.
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Figure 8. Numerical and exact solutions of example 2 for σ = 0.75
at T = 1.
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Figure 9. Numerical and exact solutions of example 2 for σ = 0.75
at different T .
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