تعداد نشریات | 44 |
تعداد شمارهها | 1,323 |
تعداد مقالات | 16,270 |
تعداد مشاهده مقاله | 52,954,078 |
تعداد دریافت فایل اصل مقاله | 15,624,756 |
تهیه و مطالعه ویژگیهای وابسته به آب و نفوذپذیری ورقههای خوراکی بر پایه پوره کدومسمایی با استفاده از روش سطح پاسخ | ||
پژوهش های صنایع غذایی | ||
مقاله 3، دوره 27، شماره 2، تیر 1396، صفحه 25-39 اصل مقاله (1.18 M) | ||
نوع مقاله: مقاله پژوهشی | ||
نویسندگان | ||
اصغر ترابی1؛ محبت محبی1؛ فریده طباطبائی یزدی1؛ فخری شهیدی1؛ یونس زاهدی* 2 | ||
1گروه علوم و صنایع غذایی، دانشکده کشاورزی، دانشگاه فردوسی مشهد | ||
2گروه علوم و صنایع غذایی، دانشکده کشاورزی و منابع طبیعی، دانشگاه محقق اردبیلی | ||
چکیده | ||
امروزه زیبایی و بازارپسندی غذا و همچنین حفاظت از مواد غذایی ازجمله مهمترین دغدغههای صنعت غذا میباشد که در واقع استفاده از پوششها و ورقههای خوراکی زیستتخریبپذیر که تا حد امکان بتواند علاوه بر زیبایی و حفاظت از غذا به محیطزیست آسیب نرساند از اهمیت بسیار بالایی برخوردار است. هدف از انجام این پژوهش بهینهسازی فرمولاسیون ورقه خوراکی بر پایه پوره کدومسمایی و بررسی اثر غلظت کربوکسیمتیلسلولز (CMC)، کتیرا و گلیسرول بر برخی ویژگیهای فیزیکی ورقه خوراکی شامل نفوذپذیری نسبت به اکسیژن و بخار آب، تورمپذیری، حلالیت در آب، فعالیت آب و میزان رطوبت بود که به کمک روش آماری سطح پاسخ، طرح مرکب مرکزی طراحی آزمایشها و بهینهسازی فرمولاسیون انجام شد. بدین منظور سطوح CMC (9/0-1/0 گرم)، کتیرا (4/0-0 گرم) و گلیسرول (5/6-5/1 گرم) مورد بررسی قرار گرفتند. طبق نتایج بهدست آمده افزایش در مقدار CMC سبب افزایش نفوذپذیری در برابر بخار آب و کاهش میزان رطوبت ورقهها شد (05/0>P). افزایش مقدار کتیرا نفوذپذیری در برابر اکسیژن ورقهها را افزایش داد (05/0>P). گلیسرول بیشترین اثر معنیدار را روی متغیرهای وابسته داشت؛ با افزایش مقدار گلیسرول نفوذپذیری به اکسیژن و بخار آب و حلالیت در آب (01/0>P) افزایش یافتند و فعالیت آبی (05/0>P) و تورمپذیری (01/0>P) کاهش یافتند. نتایج حاصل از بهینهسازی فرمولاسیون نشان داد که مطلوبیت در مقادیر بالای کتیرا و پایین CMC بیشتر بوده و بهترین فرمولاسیون حاوی 14/0 گرمCMC ، 25/0 گرم کتیرا و 88/1 گرم گلیسرول بود. | ||
کلیدواژهها | ||
کتیرا؛ کربوکسیمتیلسلولز؛ کدومسمایی؛ سطح پاسخ؛ ورقه خوراکی | ||
مراجع | ||
الماسیه، قنبرزاده ب، پزشکینجفآبادی الف. 1388، بهبود ویژگیهای فیزیکی فیلمهای زیستتخریبپذیر نشاسته و فیلمهای مرکب نشاسته و کربوکسی متیل سلولز، مجله علوم و صنایع غذایی، 6 (3)، 11-1. زاهدی ی. 1388، تولید فیلم خوراکی مرکب از پروتئین گلوبولین پسته و اسید چرب و اندازهگیری ویژگیهای بازدارندگی، مکانیکی و حرارتی آن. پایان نامه کارشناسی ارشد، دانشکده کشاورزی، دانشگاه فردوسی مشهد. فاطمی ح، 1386، شیمی مواد غذایی، انتشارات شرکت سهامی انتشار. فاضل م، عزیزی م ح، عباسی س، برزگر م. 1391، بررسی تأثیر کتیرا، گلیسرول و روغن روی خصوصیات فیلم خوراکی بر پایه نشاسته سیبزمینی، مجله علوم و صنایع غذایی دانشگاه تربیت مدرس، 34 (9)، 106-97. قنبرزاده ب، الماسی ه. 1388، بررسی ویژگی های فیزیکی فیلم های مرکب زیست تخریب پذیر خوراکی کربوکسی متیل سلولز–اسید اولئیک، علوم و صنایع غذایی، 6 (2)، 42-35. قنبرزاده ب، الماسی ه، زاهدی ی، 1388، بیوپلیمرهای زیست تخریبپذیر و خوراکی در بستهبندی مواد غذایی و دارویی، انتشارات دانشگاه صنعتی امیر کبیر (پلی تکنیک تهران). Araujo-Farro PC, Podadera G, Sobral PJ and Menegalli FC, 2010. Development of films based on quinoa ("Chenopodium quinoa", Willdenow) starch. Carbohydrate Polymers 81(4): 839-848.
Arvanitoyannis I and Biliaderis CG, 1999. Physical properties of polyol-plasticized edible blends made of methyl cellulose and soluble starch. Carbohydrate Polymers 38(1): 47-58.
Bertuzzi M, Castro Vidaurre E, Armada M and Gottifredi J, 2007. Water vapor permeability of edible starch based films. Journal of Food Engineering 80(3): 972-978.
Bravin B, Peressini D and Sensidoni A, 2006. Development and application of polysaccharide-lipid edible coating to extend shelf-life of dry bakery products. Journal of Food Engineering 76(3): 280-290.
Chillo S, Flores S, Mastromatteo M, Conte A, Gerschenson L and Del-Nobile M, 2008. Influence of glycerol and chitosan on tapioca starch-based edible film properties. Journal of Food Engineering 88(2): 159-168.
Colla E, do Amaral Sobral PJ and Menegalli FC, 2006. Amaranthus cruentus flour edible films: influence of stearic acid addition, plasticizer concentration, and emulsion stirring speed on water vapor permeability and mechanical properties. Journal of Agricultural and Food Chemistry 54(18): 6645-6653.
Du W, Olsen C, Avena-Bustillos R, McHugh T, Levin C and Friedman M, 2009. Effects of allspice, cinnamon, and clove bud essential oils in edible apple films on physical properties and antimicrobial activities. Journal of Food Science 74(7): M372-M378.
Fajardo P, Martins J, Fucinos C, Pastrana L, Teixeira J and Vicente A, 2010. Evaluation of a chitosan-based edible film as carrier of natamycin to improve the storability of Saloio cheese. Journal of Food Engineering 101(4): 349-356.
Ghasemlou M, Khodaiyan F and Oromiehie A, 2011. Physical, mechanical, barrier, and thermal properties of polyol-plasticized biodegradable edible film made from kefiran. Carbohydrate Polymers 84(1): 477-483.
Gontard N, Duchez C, Cuq J and Guilbert S, 1994. Edible composite films of wheat gluten and lipids: water vapour permeability and other physical properties. International Journal of Food Science and Technology 29(1): 39-50.
Jia D, Fang Y and Yao K, 2009. Water vapor barrier and mechanical properties of konjac glucomannan-chitosan-soy protein isolate edible films. Food and Bioproducts Processing 87(1): 7-10.
Jouki M, Khazaei N, Ghasemlou M and Hadinezhad M, 2013. Effect of glycerol concentration on edible film production from cress seed carbohydrate gum. Carbohydrate Polymers 96(1): 39-46.
McHugh T, Huxsoll C and Krochta J, 1996. Permeability properties of fruit puree edible films. Journal of Food Science 61(1): 88-91.
Mostafavi FS, Kadkhodaee R, Emadzadeh B and Koocheki A, 2016. Preparation and characterization of tragacanth–locust bean gum edible blend films. Carbohydrate Polymers 139: 20-27.
Mu C, Guo J, Li X, Lin W and Li D, 2012. Preparation and properties of dialdehyde carboxymethyl cellulose crosslinked gelatin edible films. Food Hydrocolloids 27(1): 22-29.
Perez-gago M and Krochta J, 2001. Denaturation time and temperature effects on solubility, tensile properties, and oxygen permeability of whey protein edible films. Journal of Food Science 66(5): 705-710.
Perez-Mateos M, Montero P and Gomez-Guillen M, 2009. Formulation and stability of biodegradable films made from cod gelatin and sunflower oil blends. Food Hydrocolloids 23(1): 53-61.
Rodriguez M, Oses J, Ziani K and Mate JI, 2006. Combined effect of plasticizers and surfactants on the physical properties of starch based edible films. Food Research International 39(8): 840-846.
Rojas-Grau MA, Raybaudi-Massilia RM, Soliva-Fortuny RC, Avena-Bustillos RJ, McHugh TH and Martin-Belloso O, 2007. Apple puree-alginate edible coating as carrier of antimicrobial agents to prolong shelf-life of fresh-cut apples. Postharvest Biology and Technology 45(2): 254-264.
Seyedi S, Koocheki A, Mohebbi M and Zahedi Y, 2014. Lepidium perfoliatum seed gum: A new source of carbohydrate to make a biodegradable film. Carbohydrate Polymers 101: 349-358.
Sothornvit R and Krochta J, 2000. Plasticizer effect on oxygen permeability of β-lactoglobulin films. Journal of Agricultural and Food Chemistry 48(12): 6298-6302.
Sothornvit R and Pitak N, 2007. Oxygen permeability and mechanical properties of banana films. Food Research International 40(3): 365-370.
Talaei S and Kiani A, 2015. Study on permeability of bionanocomposite film based on Tragacanth gum-Chitosan-Graphene oxide. Cumhuriyet Science Journal 1(1).
Varela P and Fiszman S, 2011. Hydrocolloids in fried foods: A review. Food Hydrocolloids 25(8): 1801-1812.
Wang X, Sun X, Liu H, Li M and Ma Z, 2011. Barrier and mechanical properties of carrot puree films. Food and Bioproducts Processing 89(2): 149-156.
Zhang Y and Han J, 2006. Plasticization of pea starch films with monosaccharides and polyols. Journal of Food Science 71(6): E253-E261.
Zhong QP and Xia WS, 2008. Physicochemical properties of edible and preservative films from chitosan/cassava starch/gelatin blend plasticized with glycerol. Food Technology and Biotechnology 46(3): 262-269. | ||
آمار تعداد مشاهده مقاله: 842 تعداد دریافت فایل اصل مقاله: 717 |