تعداد نشریات | 44 |
تعداد شمارهها | 1,303 |
تعداد مقالات | 16,020 |
تعداد مشاهده مقاله | 52,489,915 |
تعداد دریافت فایل اصل مقاله | 15,217,465 |
Stability of two classes of improved backward Euler methods for stochastic delay differential equations of neutral type | ||
Computational Methods for Differential Equations | ||
مقاله 2، دوره 5، شماره 3، مهر 2017، صفحه 201-213 اصل مقاله (326.15 K) | ||
نوع مقاله: Research Paper | ||
نویسندگان | ||
Omid Farkhondeh Rouz؛ Davood Ahmadian* | ||
Faculty of Mathematical Sciences, University of Tabriz, Tabriz, Iran | ||
چکیده | ||
This paper examines stability analysis of two classes of improved backward Euler methods, namely split-step $(\theta, \lambda)$-backward Euler (SSBE) and semi-implicit $(\theta,\lambda)$-Euler (SIE) methods, for nonlinear neutral stochastic delay differential equations (NSDDEs). It is proved that the SSBE method with $\theta, \lambda\in(0,1]$ can recover the exponential mean-square stability with some restrictive conditions on stepsize $\delta$, drift and diffusion coefficients, but the SIE method can reproduce the exponential mean-square stability unconditionally. Moreover, for sufficiently small stepsize, we show that the decay rate as measured by the Lyapunov exponent can be reproduced arbitrarily accurately. Finally, numerical experiments are included to confirm the theorems. | ||
کلیدواژهها | ||
Neutral stochastic delay differential equations؛ Exponential mean-square stability؛ Split-step (theta؛ lambda)-backward Euler method؛ Lyapunov exponent | ||
آمار تعداد مشاهده مقاله: 3,473 تعداد دریافت فایل اصل مقاله: 702 |