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Abstract This paper examines stability analysis of two classes of improved backward Euler
methods, namely split-step (θ, λ)-backward Euler (SSBE) and semi-implicit (θ, λ)-
Euler (SIE) methods, for nonlinear neutral stochastic delay differential equations
(NSDDEs). It is proved that the SSBE method with θ, λ ∈ (0, 1] can recover the
exponential mean-square stability with some restrictive conditions on stepsize ∆,
drift and diffusion coefficients, but the SIE method can reproduce the exponential
mean-square stability unconditionally. Moreover, for sufficiently small stepsize, we
show that the decay rate as measured by the Lyapunov exponent can be reproduced
arbitrarily accurately. Finally, numerical experiments are included to confirm the
theorems.

Keywords. Neutral stochastic delay differential equations, Exponential mean-square stability, Split-step

(θ, λ)-backward Euler method, Semi-implicit (θ, λ)-Euler method, Lyapunov exponent.

2010 Mathematics Subject Classification. 65C20, 60H35, 65C30.

1. Introduction

Stochastic functional differential equations (SFDEs), as an important mathemati-
cal model, appear in science and engineering applications, especially for systems whose
evolution in time is influenced by random forces as well as its history information.
Both the theory and numerical methods for SFDEs have been well developed in the
recent decades (see [21], [1], [5] and [11]). If the time delay in SFDEs reduces to a
constant, it is usually called stochastic delay differential equations (SDDEs) (see [15],
[16] and [20]). For the theory of NSFDEs we refer to [10], [12], [13] and [7]. The
scalar neutral stochastic differential equations with fixed time delay (NSDDE) has
the following general form{

d[x(t) −N(x(t− τ))] = f
(
x(t), x(t − τ)

)
dt+ g

(
x(t), x(t − τ)

)
dW (t), t > 0,

x(t) = ψ(t) ∈ C([−τ, 0];Rn),
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where τ > 0 is a fixed constant.
In practice, many system models are described by NSDDEs. The models involve not
only time delays in the state but also has time delay included in the state derivatives
(see [2] and [4]). Since most of these equations cannot be solved explicitly, numerical
approximations became to be an important tool in studying stochastic systems of
neutral type (see [22], [18] and [19]).
Mean-square stability analysis of numerical solution for system of stochastic differen-
tial equations (SDEs) is one of the key problems in stochastic analysis (see [8], [17]
and [14]). However, the study on stability of numerical method for neutral stochastic
differential systems is relatively scarce due to their technical difficulties, which is the
main topic of the present paper. Chen and Wu [3] showed that almost sure exponen-
tial stability of the backward Euler-Maruyama scheme for stochastic delay differen-
tial equations with monotone-type condition. Li and Cao [9] showed that asymtotic
mean-square stability of two-step Maruyama methods for nonlinear neutral stochastic
differential equations with constant time delay (NSDDEs). In [24], [25], [6] and [23],
authors examined the theta’s effects on the exponential mean-square stability and
revealed that the linear growth condition on the drift coefficient is necessary for the
two classes of theta approximations when θ ∈ [0, 12 ] to be mean-square stable, but for

θ ∈ (12 , 1], both of the approximations can reproduce the exponential mean-square
stability without the linear growth condition.

The rest of the paper is organized as follows. Section 2 begins with notations and
preliminaries, then it introduces the SSBE and SIE methods for NSDDEs. Section 3
examines the conditions under which the SSBE method can reproduce the exponential
mean-square stability of the exact solution with some restriction on stepsize ∆, but
the SIE method can reproduce the exponential mean-square stability unconditionally.
Section 4 describes the numerical experiments to confirm the theoretical results.

2. Preliminaries and notations

Throughout this paper, unless otherwise specified, we use the following notations.
Let | · | denotes both the Euclidean norm in R

n and the trace (or Frobenius) norm in
R

n×d. If A is a vector or matrix, its transpose is denoted by AT . If A is a matrix, its
trace norm is denoted by |A| = √

trace(ATA). a ∨ b represents max{a, b} and a ∧ b
denotes min{a, b}. Let (Ω,F ,P) be a complete probability space with a filtration
{Ft}t≥0, which is right continuous and satisfies that each F0 contains all P-null sets,
and W (t) be a d-dimensional standard Wiener process defined on this probability
space.
Let N : Rn → R

n, f : Rn × R
n �→ R

n and g : Rn × R
n �→ R

n×d be Borel measurable
functions. Consider the n-dimensional NSDDE of the form

d[x(t)−N(x(t− τ))] = f
(
x(t), x(t− τ)

)
dt+ g

(
x(t), x(t− τ)

)
dW (t), t > 0, (2.1)

with initial data x(t) = ψ(t) ∈ C([−τ, 0];Rn), E‖ψ‖2 <∞, where τ > 0 is delay time.
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Assumption 2.1. (Contractive Mapping) Assume that for all x, y ∈ R
n, there exists

a positive constant κ ∈ (0, 1) such that

|N(x) −N(y)| ≤ κ|x− y|. (2.2)

Assumption 2.2. (Local Lipschitz Condition) Let f and g satisfy the local Lipschitz
condition, that is, for each j > 0 there exists a positive constant Kj such that for any
x, y, x, y ∈ R

n with |x| ∨ |y| ∨ |x| ∨ |y| ≤ j,

|f(x, y)− f(x, y)| ∨ |g(x, y)− g(x, y)| ≤ Kj(|x− x|+ |y − y|). (2.3)

Theorem 2.1. (See [13]) Let Assumption 2.1 and 2.2 hold. Assume that there exist
two positive constants µ, σ such that for any x, y ∈ R

n,

2[x−N(y)]T f(x, y) + |g(x, y)|2 ≤ −µ|x|2 + σ|y|2. (2.4)

If µ > σ, then the trivial solution of equation (2.1) is exponential mean-square stability
and the solution x(t) satisfying in following relations

E|x(t) −N(x(t− τ))|2 ≤ C(ψ)e−γt, (2.5)

and

E|x(t)|2 ≤ C(ψ)e−γt, (2.6)

where C(ψ) represents a generic positive constant, depending on the initial data ψ,
whose value may changes with each appearance. Let γ := γ ∧ r with γ and r defined
by

γ = max

{
q > 0; q(1 + ε)− µ+

[
q(1 + ε)

κ2

ε
+ σ

]
eqτ = 0, ε > 0

}
,

and r :=
2

τ
ln

1

κ
− � for sufficiently small � > 0.

Remark 2.2. It is easy to see that the coupled monotone condition (2.4) implies
that

2[x−N(y)]T f(x, y) ≤ −µ|x|2 + σ|y|2.
Now we introduce the split-step (θ, λ)-backward Euler (SSBE) approximation {xk}k≥0

as follows:{
yk = xk −N(xk−Nτ ) +N(yk−Nτ ) + θf(yk, yk−Nτ )∆, k ≥ 0,
xk+1 = xk +N(xk+1−Nτ )−N(xk−Nτ ) + f(yk, yk−Nτ )∆ + λg(yk, yk−Nτ )∆Wk,

(2.7)

where stepsize ∆ = τ
Nτ

for a integerNτ , xk = yk = ψ(k∆) for k = −Nτ ,−Nτ + 1, · · · ,−1,

y0 = ψ(0), θ and λ are fixed parameters in interval (0, 1]. The Wiener increments is
defined as ∆Wk :=W ((k+1)∆)−W (k∆), whereW (k∆) denotes the Wiener process
at time k∆. It is interesting to deduce that the approximation {yk}k≥0 in (2.7) has
the form

yk+1 = yk +N(yk+1−Nτ )−N(yk−Nτ )+ θf(yk+1, yk+1−Nτ )∆+λg(yk, yk−Nτ )∆Wk.

(2.8)
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We refer to (2.8) as semi-implicit (θ, λ)-Euler (SIE) method which includes the back-
ward Euler (BE) method when θ = λ = 1.

3. Exponential mean-square stability analysis

In this section, we first prove the exponential mean-square stability of SSBE
approximation {xk}k≥0 for θ, λ ∈ (0, 1]. For the purpose of stability, assume that
N(0) = f(0, 0) = 0, g(0, 0) = 0. This shows that (2.1) admits a trivial solution.

Theorem 3.1. Let all the conditions in Theorem 2.1 hold and θ, λ ∈ (0, 1]. If there
exists two positive constants K1 and K2 such that the functions f and g satisfy the
linear growth conditions

|f(x, y)|2 ≤ K1(|x|2 + |y|2), |g(x, y)|2 ≤ K2(|x|2 + |y|2), (3.1)

for all (x, y) ∈ R
n × R

n, then there is a stepsize bound ∆∗ =
(µ− σ)θ + 2K2λ

2

2(1− 2θ)K1
, such

that for any ∆ < ∆∗, the SSBE approximation {xk}k≥0 has the properties

E|xk −N(xk−Nτ )|2 ≤ C(ψ)e−γ∆(θ)k∆, (3.2)

and

E|xk|2 ≤ C(ψ)e−γ∆(θ)k∆, (3.3)

where γ∆(θ) = γ∆(θ) ∧ r and γ∆(θ) ∈ (0, 1τ ln(µσ )) is the unique root of the equation

− µ+
1− e−γ∆(θ)∆

∆
(1 + θ∆)(1 + ε0 +K1θ∆) + (1− 2θ)K1∆+ λ2K2

+

[
1− e−γ∆(θ)∆

∆
(1 + θ∆)

(1 + ε0
ε0

κ2 +K1θ∆
)
+ σ + (1− 2θ)K1∆+ λ2K2

]
eγ∆(θ)τ = 0,

(3.4)

and

lim
∆→0

γ∆(θ) = γ. (3.5)

Proof. Let zk = xk −N(xk−Nτ ). It is easy to deduce from (2.7) that

|zk+1|2 = |zk|2 + |f(yk, yk−Nτ )|2∆2 + λ2|g(yk, yk−Nτ )|2|∆Wk|2
+ 2zTk f(yk, yk−Nτ )∆ + 2〈zk + f(yk, yk−Nτ )∆, λg(yk, yk−Nτ )∆Wk〉.

(3.6)

Note that zk = yk −N(yk−Nτ )− θf(yk, yk−Nτ )∆. Substituting this equality into
(3.6), we have

|zk+1|2 = |zk|2 + (1− 2θ)|f(yk, yk−Nτ )|2∆2 + λ2|g(yk, yk−Nτ )|2|∆Wk|2
+ 2[yk −N(yk−Nτ )]

T f(yk, yk−Nτ )∆ +m∆
k , (3.7)

where

m∆
k = 2〈yk −N(yk−Nτ ) + (1 − θ)f(yk, yk−Nτ )∆, λg(yk, yk−Nτ )∆Wk〉.
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Note that

E
(
∆Wk

)
= 0, (3.8)

therefore we conclude

E(m∆
k ) = 0. (3.9)

Now by using (2.4) and (3.1), and then taking the expectation on the both sides of
(3.7), we obtain

E|zk+1|2 ≤ E|zk|2 +
[−µ+ (1− 2θ)K1∆+ λ2K2

]
∆E|yk|2

+
[
σ + (1 − 2θ)K1∆+ λ2K2

]
∆E|yk−Nτ |2. (3.10)

Subsequently for any positive number P ≥ 1, we have

P (k+1)∆
E|zk+1|2 − P k∆

E|zk|2 ≤ (1− P−∆)P (k+1)∆
E|zk|2

+ [−µ+ (1− 2θ)K1∆+ λ2K2]∆P
(k+1)∆

E|yk|2
+ [σ + (1− 2θ)K1∆+ λ2K2]∆P

(k+1)∆
E|yk−Nτ |2.

(3.11)

Also by using the linear growth condition (3.1) and the elementary inequality

|a+ b|2 ≤ (1 + ε)(a2 +
1

ε
b2),

for any positive constants a, b ∈ R
n and ε, we obtain

E|zk|2 = E
(|yk −N(yk−Nτ )− θf(yk, yk−Nτ )∆|2)

≤ (1 + θ∆)(1 + ε+K1θ∆)E|yk|2 + (1 + θ∆)
(1 + ε

ε
κ2 +K1θ∆

)
E|yk−Nτ |2.

(3.12)

Substituting inequality (3.12) into (3.11) and letting ε = ε0 yields

P (k+1)∆
E|zk+1|2−P k∆

E|zk|2 ≤ −µ∆(P )∆P
(k+1)∆

E|yk|2+σ∆(P )∆P (k+1)∆
E|yk−Nτ |2,

(3.13)

where

µ∆(P ) = µ− 1− P−∆

∆
(1+θ∆)(1+ε0+K1θ∆)− (1−2θ)K1∆−λ2K2, (3.14)

and

σ∆(P ) = σ +
1− P−∆

∆
(1 + θ∆)

(1 + ε0
ε0

κ2 +K1θ∆
)
+ (1− 2θ)K1∆+ λ2K2.

(3.15)
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Summing relation (3.13) from j = 0 to j = k, which implies

P (k+1)∆
E|zk+1|2 ≤ E|z0|2 − µ∆(P )∆

k∑
j=0

P (j+1)∆
E|yj |2 + σ∆(P )∆

k∑
j=0

P (j+1)∆
E|yj−Nτ |2

≤ E|z0|2 + σ∆(P )∆

−1∑
j=−Nτ

P (j+1)∆
E|yj−Nτ |2 + h(P )∆

k∑
j=0

P (j+1)∆
E|yj |2,

(3.16)

where h(P ) = µ∆(P )− P τσ∆(P ).
Let

∆∗ =

⎧⎨
⎩

+∞, θ = 1
2 , λ ∈ (0, 1],

(µ− σ) + 2K2λ
2

2(1− 2θ)K1
, θ ∈ [0, 12 ), λ ∈ (0, 1].

(3.17)

For ∆ < ∆∗, h(1) < 0 and for P = (µσ )
1
τ , h(P ) > 0. Moreover, h

′
(P ) > 0 for any

P > 1. Hence, for any θ, λ ∈ (0, 1] and ∆ < ∆∗, there is a unique positive constant

γ∆(θ) such that eγ∆(θ) ∈ (1, (µσ )
1
τ ) and h(eγ∆(θ)) = 0, which implies (3.4). The limi-

tation (3.5) follows from (3.4), directly. Taking P = eγ∆(θ) in (3.16) it yields

eγ∆(θ)(k+1)∆
E|zk+1|2 ≤ E|z0|2 + σ∆(e

γ∆(θ))∆

−1∑
j=−Nτ

E|yj−Nτ |2 := C(ψ),

(3.18)

then

E|zk|2 ≤ C(ψ)e−γ∆(θ)k∆,

which gives (3.2). Then from the definition of zk and the contractive condition (2.2)
we obtain that for any ε > 0 and 0 ≤ i ≤ k,

eγ∆(θ)i∆
E|xi|2 ≤ (1 + ε)

[
eγ∆(θ)i∆

E|zi|2 + 1

ε
κ2eγ∆(θ)i∆

E|xi−Nτ |2
]

≤ (1 + ε)
[
eγ∆(θ)i∆C(ψ)e−γ∆(θ)i∆ +

1

ε
κ2eγ∆(θ)i∆

E|xi−Nτ |2
]
,

(3.19)

and then we know that eγ∆(θ)i∆e−γ∆(θ)i∆ = 1, we conclude

eγ∆(θ)i∆
E|xi|2 ≤ (1 + ε)C(ψ) +

1 + ε

ε
κ2eγ∆(θ)τ sup

−m≤j≤k
eγ∆(θ)j∆

E|xj |2. (3.20)

Note that this inequality also holds for all−m ≤ i ≤ 0. In view of γ∆(θ) ≤ r < 2
τ ln( 1κ ),

there exists a positive constant ε0 such that R(ε0) :=
1 + ε0
ε0

κ2eγ∆(θ)τ < 1, therefore

we have

sup
−m≤j≤k

eγ∆(θ)j∆
E|xj |2 ≤ (1+ ε0)C(ψ)+R(ε0) sup

−m≤j≤k
eγ∆(θ)j∆

E|xj |2, (3.21)

which gives (3.3). This completes the proof of the Theorem 3.1. �
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Theorem 3.1 shows that for sufficiently small stepsize, the bound of the Lyapunov
exponent of the exact solution can also be preserved. Now we examine the exponential
mean-square stability of SIE approximation {yk}k≥0 for θ, λ ∈ (0, 1].

Remark 3.2. It is easy to see that the coupled monotone condition (2.4) for some
nonnegative constants η1, η2, η3, η4 implies that

2[x−N(y)]T f(x, y) ≤ −η1|x|2 + η2|y|2, (3.22)

|g(x, y)|2 ≤ η3|x|2 + η4|y|2, (3.23)

for any (x, y) ∈ R
n × R

n with η1 − η3 > η2 + η4.

Theorem 3.3. Under Assumption 2.1 and Assumption 2.2, assume that conditions
(3.22) and (3.23) hold and θ, λ ∈ (0, 1]. Then the SIE method is exponential mean-
square stable for any stepsize ∆ with the properties

E|yk −N(yk−Nτ )|2 ≤ C(ψ)e−γ∆(θ)k∆, (3.24)

and

E|yk|2 ≤ e−γ∆(θ)k∆, (3.25)

where γ∆(θ) = γ∆(θ) ∧ r and γ∆(θ) ∈ (0, 1τ ln(η1

η2
)) is the unique root of the equation

− η1θ + η3λe
γ∆(θ)∆ + (1 + ε0)(

eγ∆(θ)∆ − 1

∆
)

+

[
η2θ + η4λe

γ∆(θ)∆ + κ2(1 +
1

ε0
)(eγ∆(θ)∆ − 1)/∆

]
eγ∆(θ)τ = 0,

(3.26)

and

lim
∆→0

γ∆(θ) = γ. (3.27)

Proof. Let Yk = yk −N(yk−Nτ ). Then from conditions (3.22) and (3.23), we have

|Yk+1|2 = 〈Yk+1, Yk + θf(yk+1, yk+1−Nτ )∆ + λg(yk, yk−Nτ )∆Wk〉
= 〈Yk+1, θf(yk+1, yk+1−Nτ )∆〉+ 〈Yk+1, Yk + λg(yk, yk−Nτ )∆Wk〉

≤ θ

2
(−η1|yk+1|2 + η2|yk+1−Nτ |2)∆ +

1

2

[|Yk+1|2 + |Yk + λg(yk, yk−Nτ )∆Wk|2
]

≤ θ

2
(−η1|yk+1|2 + η2|yk+1−Nτ |2)∆ +

1

2

[|Yk+1|2 + |Yk|2 + λ(η3|yk|2 + η4|yk−Nτ |2)∆
]

+
1

2
m∆

k , (3.28)

where

m∆
k = |g(yk, yk−Nτ )|2(|∆Wk|2 −∆) + 2λY T

k g(yk, yk−Nτ )∆Wk. (3.29)

Then we have

|Yk+1|2 ≤ |Yk|2+θ
[−η1|yk+1|2+η2|yk+1−Nτ |2

]
∆+λ

[
η3|yk|2+η4|yk−Nτ |2

]
∆+m∆

k .
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(3.30)

Note that E
(|∆Wk|2

)
= ∆ and E

(
∆Wk

)
= 0, which implies E(m∆

k ) = 0. Taking ex-
pectation on the both sides of inequality (3.30), we have

E|Yk+1|2 ≤ E|Yk|2+θ
[−η1E|yk+1|2 + η2E|yk+1−Nτ |2

]
∆+λ

[
η3E|yk|2 + η4E|yk−Nτ |2

]
∆.

(3.31)

Subsequently for any positive number P > 1, we derive

[
P (k+1)∆

E|Yk+1|2 − P k∆
E|Yk|2

]
≤ θ

[−η1E|yk+1|2 + η2E|yk+1−Nτ |2
]
∆P (k+1)∆

+
(
P (k+1)∆ − P k∆

)
E|Yk|2

+ λ
[
η3E|yk|2 + η4E|yk−Nτ |2

]
∆P (k+1)∆. (3.32)

Summing relation (3.32) from i = 0 to i = k − 1, which implies

k−1∑
i=0

[
P (i+1)∆

E|Yi+1|2 − P i∆
E|Yi|2

]
≤

k−1∑
i=0

θ
[−η1E|yi+1|2 + η2E|yi+1−Nτ |2

]
∆P (i+1)∆

+

k−1∑
i=0

λ
[
η3E|yi|2 + η4E|yi−Nτ |2

]
∆P (i+1)∆

+

k−1∑
i=0

(
P (i+1)∆ − P i∆

)
E|Yi|2.

By using the contractive condition (2.2) and the elementary inequality |a + b|2 ≤
(1 + ε)(a2 +

1

ε
b2) for any positive constants a, b ∈ R

n and ε, we obtain

P k∆
E|Yk|2 ≤ E|Y0|2 − η1θ∆

k−1∑
i=0

P (i+1)∆
E|yi+1|2 + η2θ∆

k−1∑
i=0

P (i+1)∆
E|yi+1−Nτ |2

+
[
η3λ∆P

∆ + (1 + ε0)(P
∆ − 1)

] k−1∑
i=0

P i∆
E|yi|2

+

[
η4λ∆P

∆ + κ2(1 +
1

ε0
)(P∆ − 1)

] k−1∑
i=0

P i∆
E|yi−Nτ |2. (3.33)

Note that

−
k−1∑
i=0

P (i+1)∆
E|yi+1|2 = −

k−1∑
i=0

P i∆
E|yi|2 + E|y0|2 − P k∆

E|yk|2, (3.34)
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and

k−1∑
i=0

P (i+1)∆
E|yi+1−Nτ |2 =

k−Nτ∑
i=−Nτ+1

P (i+Nτ )∆E|yi|2

= PNτ∆
−1∑

i=−Nτ+1

P i∆
E|yi|2 + PNτ∆

k−1∑
i=0

P i∆
E|yi|2

− PNτ∆
k−1∑

i=k−Nτ+1

P i∆
E|yi|2. (3.35)

Substituting (3.34) and (3.35) into (3.33) it yields

P k∆
E|Yk|2 ≤

[
η2θ + η4λP

∆ + κ2(1 +
1

ε0
)(P∆ − 1)/∆

]
P τ∆

−1∑
i=−Nτ+1

E|yi|2

+ E|Y0|2 + η1θ∆E|y0|2 + h(P )∆
k−1∑
i=0

P i∆
E|yi|2, (3.36)

where

h(P ) = −η1θ+η3λP∆+(1+ε0)
P∆ − 1

∆
+

[
η2θ + η4λP

∆ + κ2(1 +
1

ε0
)(P∆ − 1)/∆

]
P τ .

For P = (η1

η2
)

1
τ , it is easy to see that h(P ) > 0, and h(1) < 0, which h′(P ) > 0 for any

positive constant P ≥ 1. Hence, for any θ, λ ∈ (0, 1] there exists a unique constant

P ∗
∆ ∈ (1, (η1

η2
)

1
τ ) such that h(P ∗

∆) = 0. Taking P = P ∗
∆ = eγ∆(θ) in (3.36) we get

following inequality

E|Yk|2 ≤ C(ψ)e−γ∆(θ)k∆,

which implies (3.24). Moreover

h(eγ∆(θ)) = −η1θ + η3λe
γ∆(θ)∆ + (1 + ε0)(

eγ∆(θ)∆ − 1

∆
)

+

[
η2θ + η4λe

γ∆(θ)∆ + κ2(1 +
1

ε0
)(eγ∆(θ)∆ − 1)/∆

]
eγ∆(θ)τ = 0,

which implies (3.26). The limitation (3.27) follows from (3.26), directly. Now by
similar the arguments used in the proof of Theorem 3.1, we can obtain the relation
(3.25). �

Theorem 3.3 shows that the SIE method for θ, λ ∈ (0, 1], can recovers the expo-
nential mean-square stability unconditionally.

4. Numerical illustrations

By the numerical test, we show the influence of θ and λ on exponential mean-square
stability of the SSBE and SIE methods.
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Example 4.1. Consider the following nonlinear NSDDE:

d

[
x(t)− 1

4
sin(x(t− 1))

]
=

(− 6x(t) + x(t− 1)
)
dt+ x(t) cos(x(t− 1))dW (t), t > 0,

(4.1)

with the initial data x(t) = 1 for t ∈ [−1, 0], whereW (t) is a scalar Brownian motion.
It is easy to see that the drift and diffusion coefficients satisfy the linear growth
conditions (3.1). We can deduce that for any ρ ∈ (0, 115 ),

2[x−N(y)]T f(x, y) + |g(x, y)|2 = −12x2 + 2xy + 3x sin(y)− 1

2
y sin(y) + x2

≤ −11x2 + 5|xy|+ 1

2
y2

≤ (−11 + 5ρ)x2 + (
4

5ρ
+

1

2
)y2. (4.2)

Let µ = 11− 5ρ and σ = 4
5ρ + 1

2 , then we conclude that µ > σ. For example by setting

ρ = 1.2, we obtain µ = 5 and σ = 7
6 , and applying Theorem 2.1 it yields

E|x(t) −N(x(t− 1))|2 ≤ C(ψ)e−0.7754t,

and

E|x(t)|2 ≤ C(ψ)e−0.7754t.

That is, the trivial solution to equation (4.1) is exponentially mean-square stable with
the Lyapunov exponent less than −0.7754.

Figure 1. Simulation of E|x(t)|2, using SSBE method.
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(a) Unstable and stable tests with θ = 0.1, λ = 0.1.
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(b) Unstable and stable tests with θ = 0.1, λ = 0.5.
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Figure 2. Simulation of E|x(t)|2, using SSBE method.
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(a) Stable test with θ = 0.6, λ = 0.1.
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(b) Stable test with θ = 0.6, λ = 0.5.

Figure 3. Simulation of E|x(t)|2, using SSBE method.
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(a) Stable test with θ = 0.8, λ = 0.5.
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(b) Stable test with θ = 0.8, λ = 0.8.

Figure 4. Simulation of E|y(t)|2, using SIE method.
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(a) Stable test with θ = 0.1, λ = 0.1.
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(b) Stable test with θ = 0.1, λ = 0.5.

Choosing the stepsizes ∆ = 1, 2−1, 2−2, 2−3 and taking the average of 103 sam-
ple paths, we obtain the stability analysis of the SSBE and SIE methods numeri-
cally, which are shown in Figures 1-6. In Figure 1, we can see that, the stepsize
bound will be needed for the SSBE method to preserve the exponential mean-square
stability of the exact solution, but Figures 2 and 3 show that the SSBE method
with (θ = 0.6, λ = 0.1), (θ = 0.6, λ = 0.5), (θ = 0.8, λ = 0.5) and (θ = 0.8, λ = 0.8)
can share the exponential mean-square stability even for large stepsize. In Figures 3-6
we can see that, the SIE method for any different choices of θ and λ can reproduce
the exponential mean-square stability unconditionally.
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Figure 5. Simulation of E|y(t)|2, using SIE method.
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(a) Stable test with θ = 0.6, λ = 0.1.
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(b) Stable test with θ = 0.6, λ = 0.5.

Figure 6. Simulation of E|y(t)|2, using SIE method.
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(a) Stable test with θ = 0.8, λ = 0.5.
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(b) Stable test with θ = 0.8, λ = 0.8.

Conclusion

In this paper, we have investigated two classes improved backward Euler methods
for NSDDEs under a coupled monotone condition on drift and diffusion coefficients.
In this regard we examined the exponential mean-square stability for these kind of
equations. The parameters θ and λ can extend the values of stepsize ∆ in the expo-
nential mean-square stability for SSBE method. We obtained the stability results of
the SSBE and SIE methods numerically, which is shown in Figures 1-6.
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