تعداد نشریات | 43 |
تعداد شمارهها | 1,268 |
تعداد مقالات | 15,628 |
تعداد مشاهده مقاله | 51,682,466 |
تعداد دریافت فایل اصل مقاله | 14,566,824 |
A new numerical scheme for solving systems of integro-differential equations | ||
Computational Methods for Differential Equations | ||
مقاله 3، دوره 1، شماره 2، دی 2013، صفحه 108-119 اصل مقاله (388.09 K) | ||
نوع مقاله: Research Paper | ||
نویسندگان | ||
Esmail Hesameddini؛ Azam Rahimi | ||
Shiraz University of Technology | ||
چکیده | ||
This paper has been devoted to apply the Reconstruction of Variational Iteration Method (RVIM) to handle the systems of integro-differential equations. RVIM has been induced with Laplace transform from the variational iteration method (VIM) which was developed from the Inokuti method. Actually, RVIM overcome to shortcoming of VIM method to determine the Lagrange multiplier. So that, RVIM method provides rapidly convergent successive approximations to the exact solution. The advantage of the RVIM in comparison with other methods is the simplicity of the computation without any restrictive assumptions. Numerical examples are presented to illustrate the procedure. Comparison with the homotopy perturbation method has also been pointed out. | ||
کلیدواژهها | ||
System of integro-differential equations؛ Volterra equation؛ Reconstruction of variational iteration method؛ Homotopy perturbation method | ||
مراجع | ||
[1] S. Abbasbandy, E. Shivanian, Application of variational iteration method for n-th order integro-dierential equations, Verlag der Zeitschrift furnatur for Schung, 46a (2009), 439-444. [2] J. Biazar, E. Babolian and R. Islam, Solution of the system of Volterra integral equations of the rst kind by Adomian decomposition method, Appl. Math. Comput., 139 (2003), 249-258. [3] A. Bratsos, M. Ehrhardt and T. h. Famelis, A discrete Adomian decomposition method for discrete nonlinear Schrodinger equations, Appl. Math. Comput. , 197 (2008), 190- 205. [4] Y. S. Choi, R. Lui, An integro-dierential equation arising from an electrochemistry model, Quart. Appl. Math. 4 (1997) 677686. [5] J. A. Cuminato, A. D. Fitt, M. J. S. Mphaka, A. Nagamine, A singular integro- dierential equation model for dryout in LMFBR boiler tubes, IMA J. Appl. Math. 75 (2009) 269290. [6] C. M. Cushing, Integro-dierential Equations and Delay Models in Population Dynam- ics, in: Lecture Notes in Biomathematics, vol. 20, Springer, NewYork, 1977. [7] D. D. Ganji, A. Rajabi, Assessment of homotopy-perturbation and perturbation meth- ods in heat radiation equations, Int. Commun., Heat and Mass Transfer 33 (3) (2006) 391400. [8] D. D. Ganji, A. Sadighi, Application of Hes homotopy-perturbation method to nonlinear coupled systems of reaction-diusion equations, Int. J. Nonlinear Sci. Numer. Simul., 7 (4) (2006) 411418. [9] A. Golbabai and M. Javidi, Application of He's homotopy perturbation method for n-th order integro-dierential equations, Appl. Math. Comput., 190 (2007), 1409-1416. [10] J. H. He, Homotopy perturbation technique, Comput. Math. Appl. Mech. Eng., 178 (1999), 257-262. [11] E. Hesameddini and H. Latizadeh, Reconstruction of variational iteration algorithm using the Laplace transform, Int. J. of Non. Sci. and Numer. Sim., 10 (2009), 1365- 1370. [12] A. J. Jerri, Introduction to integral equations with applications, Seconded, Wiley Inter- science, 1999. [13] K. Maleknejad and Y. Mahmoudi, Taylor polynomial solution of high-order nonlinear Volterra-Fredholm integro-dierential equations, Appl. Math. Comput., 145 (2003), 641- 653. [14] H. Thieme, A model for the spatial spread of an epidemic, J. Math. Biol., 4 (1977) 337351. [15] S. Q. Wang and J. H. He, Variational iteration method for solving integro-dierential equations, Phys. Lett., 367 (2007), 188-191. [16] A. M. Wazwaz, A reliable modication of Adomaion's decomposition method, Appl. Math. Comput., 102 (1999), 77-86. [17] X. Q. Zhao, Dynamical Systems in Population Biology, CMS Books in Mathematics, vol. 16, Springer, 2003. | ||
آمار تعداد مشاهده مقاله: 3,412 تعداد دریافت فایل اصل مقاله: 3,133 |