تعداد نشریات | 44 |
تعداد شمارهها | 1,303 |
تعداد مقالات | 16,020 |
تعداد مشاهده مقاله | 52,489,313 |
تعداد دریافت فایل اصل مقاله | 15,216,902 |
Inverse Sturm-Liouville problems with transmission and spectral parameter boundary conditions | ||
Computational Methods for Differential Equations | ||
مقاله 1، دوره 2، شماره 3، مهر 2014، صفحه 123-139 اصل مقاله (499.58 K) | ||
نوع مقاله: Research Paper | ||
نویسنده | ||
Mohammad Shahriari* | ||
University of Maragheh | ||
چکیده | ||
This paper deals with the boundary value problem involving the differential equation ell y:=-y''+qy=lambda y, subject to the eigenparameter dependent boundary conditions along with the following discontinuity conditions y(d+0)=a y(d-0), y'(d+0)=ay'(d-0)+b y(d-0). In this problem q(x), d, a , b are real, qin L^2(0,pi), din(0,pi) and lambda is a parameter independent of x. By defining a new Hilbert space and using spectral data of a kind, it is developed the Hochestadt's result based on transformation operator for inverse Sturm-Liouville problem with parameter dependent boundary and discontinuous conditions. Furthermore, it is established a formula for q(x) - tilde{q}(x) in the finite interval, where tilde{q}(x) is an analogous function with q(x). | ||
کلیدواژهها | ||
Inverse Sturm-Liouville problem؛ Jump conditions؛ Green's function؛ Eigenparameter dependent condition؛ Transformation operator | ||
آمار تعداد مشاهده مقاله: 2,738 تعداد دریافت فایل اصل مقاله: 1,682 |