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Abstract This paper deals with the boundary value problem involving the differential equation

`y := −y′′ + qy = λy,

subject to the eigenparameter dependent boundary conditions along with the fol-

lowing discontinuity conditions

y(d+ 0) = ay(d− 0), y′(d+ 0) = ay′(d− 0) + by(d− 0).

In this problem q(x), d, a, b are real, q ∈ L2(0, π), d ∈ (0, π) and λ is a parameter
independent of x. By defining a new Hilbert space and using spectral data of a

kind, it is developed the Hochestadt’s result based on transformation operator for

inverse Sturm-Liouville problem with parameter dependent boundary and discon-
tinuous conditions. Furthermore, it is established a formula for q(x) − q̃(x) in the

finite interval, where q̃(x) is an analogous function with q(x).

Keywords. Inverse Sturm-Liouville problem; Jump conditions; Green’s function; Eigenparameter depen-

dent condition; Transformation operator.

2010 Mathematics Subject Classification. 34B24, 34B20, 47A05, 47A10.

1. Introduction

We consider the boundary value problem

`y := −y′′ + qy = λy, (1.1)

subject to the parameter dependent boundary conditions

U(y) := λ(y′(0) + h1y(0))− h2y
′(0)− h3y(0) = 0,

V (y) := λ(y′(π) +H1y(π))−H2y
′(π)−H3y(π) = 0, (1.2)
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and the jump conditions

U1(y) := y(d+ 0)− ay(d− 0) = 0,

U2(y) := y′(d+ 0)− ay′(d− 0)− by(d− 0) = 0, (1.3)

where q(x) is real function in ∈ L2[0, π], hi, Hi, (i = 1, 2, 3), a, b, and d are real with

d ∈ (0, π). r1 := h3 − h1h2 > 0 and r2 := H1H2 − H3 > 0. For simplicity we use

the notation L = L(q;hi;Hi; d) for the problem (1.1)–(1.3). Here λ is the spectral

parameter.

In this paper, we study the inverse Sturm-Liouville problems. The inverse Sturm-

Liouville problems can be regarded as three aspects, e.g., existence, uniqueness and

reconstruction of the potential function q from given spectral data. These problems

originated in the work of Ambarzumian(1929) [3], were continued by Borg(1945) [7],

and have been gradually elucidated over the past seventy years. Here we want to

look at the question of uniqueness for the above problem using two set of spectra,

or one spectrum plus part of a set of value of eigenfunctions at some interior point.

Such kind of problems have a long tradition and we refer the reader to [3–7], [9–

16], [18–22], [25, 27, 29, 31, 32], [34–38], and the references therein. In particular,

the operator ` plays an important role as the one-dimensional Schrödinger operator

in quantum mechanics and our transmission conditions include the case of point

interactions (see e.g. the monographs [2, 33]). In this manuscript, we generalize the

Hochstadt’s result [13], refining the approach of Levinson [25] for eigenparameter

dependent boundary conditions for Sturm-Liouville operator to show that precisely

how much q has freedom where the λ′n and all but finitely many of the λn are specified.

Note that the eigenvalues λ′n is obtained with replacing Hi by Hi in (1.2). There

are many papers concerning problems with discontinuous conditions. One can find

the similar works for discontinuous conditions in [4, 12, 17, 18, 32, 34–36, 38]. The

similar works for Hochstadt’s result in [6, 20, 21, 30]. Nowadays there are several

number of papers devoted to inverse problems for the Sturm-Liouville operator with

eigenparameter dependent boundary conditions in [5, 11,17,30,36,37].

In section 2 we define a new Hilbert space for the eigenparameter dependent bound-

ary conditions for the Sturm-Liouville operator by using similar techniques as in [1,28],

to obtain the asymptotic form of solutions and eigenvalues. In section 3 we formulate

a novel inverse Sturm-Liouville problem based on transformation operator.
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2. The Hilbert space formulation and asymptotic form of solutions

and eigenvalues

In this section, we introduce the special inner product in the Hilbert space (L2(0, d)⊕
L2(d, π))⊕C2 and we define a linear operator A in it such that the problem (1.1)–(1.3)

can be interpreted as the eigenvalue problem of A. So, we define a new Hilbert space

inner product on H := (L2(0, d)⊕ L2(d, π))⊕ C2 by

〈F,G〉H := |a|
∫ d−0

0

fḡ +
1

|a|

∫ π

d+0

fḡ +
|a|
r1
f1ḡ1 +

1

r2|a|
f2ḡ2, (2.1)

where F (x) =

 f(x)

f1

f2

 and G(x) =

 g(x)

g1

g2

 ∈ H and we let

R1(u) := u′(0) + h1u(0), R′1(u) := h2u(0) + h3u
′(0),

R2(u) := u′(π) +H1u(π), R′2(u) := H2u(π) +H3u
′(π).

In this Hilbert space we construct the operator

A : H → H, (2.2)

with domain

D(A) =


F =

 f(x)

f1

f2


∣∣∣∣∣∣∣ f(x), f ′(x) ∈ AC[0, d) ∪ (d, π] and,

f(d± 0), f ′(d± 0) is defined, `f ∈ L2[(0, d) ∪ (d, π)]

U(f) = U1(f) = U2(f) = 0, f1 = R1(f), f2 = R2(f)


, (2.3)

by action law

AF =

 `f

R′1(f)

R′2(f)

 with F =

 f(x)

R1(f)

R2(f)

 ∈ D(A),

thus, we can change the boundary value problem (1.1)-(1.3) as following form

AY = λY, Y :=

 y(x)

R1(y)

R2(y)

 ∈ D(A), (2.4)

in the Hilbert space H. It is easy to verify that the eigenvalues of the operator A

coincide with those of the problem (1.1)-(1.3).
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Theorem 2.1. The operator A is self-adjoint.

Proof. We omit the proof, since the arguments are the same as in [1, 28]. �

Suppose that the functions ϕ(x, λ) and ψ(x, λ) are solutions of (1.1) under the

initial conditions

ϕ(0, λ) = h2 − λ, ϕ′(0, λ) = λh1 − h3, (2.5)

and

ψ(π, λ) = H2 − λ, ψ′(π, λ) = λH1 −H3, (2.6)

and the jump conditions (1.3). By attaching a subscript 1 or 2 to the functions ϕ

and ψ, we mean to refer to the first subinterval [0, d) or to the second subinterval

(d, π]. By virtue of [1] problem (1.1) under the initial conditions (2.5) or (2.6) has

a unique solution ϕ1(x, λ) or ψ2(x, λ), which is an entire function of λ ∈ C for each

fixed point x ∈ [0, d) or x ∈ (d, π]. From the linear differential equations we obtain

the Wronskians

∆1(λ) := W (ϕ1(x, λ), ψ1(x, λ)), (2.7)

and

∆2(λ) := W (ϕ2(x, λ), ψ2(x, λ)), (2.8)

are independent on x ∈ [0, d) ∪ (d, π]. By using the jump conditions we obtain

∆2(λ) = a2∆1(λ), for each λ ∈ C.

Corollary 2.2. The zeros of ∆(λ) := ∆2(λ) = a2∆1(λ) coincide, and the eigenvalues

of the problem with the zeros (1.1)–(1.3) coincide with the zeros of the function ∆(λ).

Corollary 2.3. By self-adjointness of A and Corollary 2.2, all eigenvalues of the

problem (1.1)–(1.3) are real and simple.

Theorem 2.4. Let λ = ρ2 and τ := Imρ. For equation (1.1) with spectral parameter

dependent boundary conditions (1.2) and jump conditions (1.3) as |λ| → ∞, the

following asymptotic formulas hold:

ϕ(x;λ) =


ρ2 cos ρx+ ρ(−h1 + 1

2

∫ x
0
q(t)dt) sin ρx+O(exp(|τ |x)), x < d,

aρ2 cos ρx+ ρ(f1(x) sin ρx+ f2(x) sin ρ(2d− x))

+O(exp(|τ |x)), x > d,

(2.9)
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ϕ′(x;λ) =


−ρ3 sin ρx+ ρ2(−h1 + 1

2

∫ x
0
q(t)dt) cos ρx

+O(ρ exp(|τ |x)), x < d,

−aρ3 sin ρx+ ρ2(f1(x) cos ρx

−f2(x) cos ρ(2d− x)) +O(ρ exp(|τ |x)), x > d,

(2.10)

and

ψ(x;λ) =



1
a
ρ2 cos ρ(π − x) + ρ (g1(x) sin ρ(π − x)

+g2(x) sin ρ(2d+ x− π)) +O(exp |τ |(π − x)), x < d,

ρ2 cos ρ(π − x) + ρ(H1 + 1
2

∫ π
π−x q(x)dx) sin ρ(π − x)

+O(exp |τ |(π − x)), x > d,

(2.11)

ψ′(x;λ) =



1
a
ρ3 sin ρ(π − x) + ρ2(−g1(x) cos ρ(π − x)

+g2(x) cos ρ(2d+ x− π)) +O(ρ exp(|τ |π − x)), x < d,

ρ3 sin ρ(π − x)− ρ2(H1 + 1
2

∫ π
π−x q(x)dx) cos ρ(π − x)

+O(ρ exp |τ |(π − x)), x > d,

(2.12)

where

f1(x) = a

(
−h1 +

1

2

∫ x

0

q(t)dt

)
+
b

2
, f2(x) =

b

2
,

g1(x) =
1

a

(
H1 +

1

2

∫ π

π−x
q(t)dt

)
− b

2a2
, g2(x) = − b

2a2
.

The characteristic function is

∆(λ) =− aρ5 sin ρπ + ρ4[(f1(π) + aH1) cos ρπ − f2(π) cos ρ(2d− π)]

+O(ρ3 exp(|τ |π)). (2.13)

Proof. Suppose C(x, λ) and S(x, λ) are the solutions of (1.1) with the initial condi-

tions

C(0, λ) = 1, C ′(0, λ) = 0 and S(0, λ) = 0, S′(0, λ) = 1,

and the jump conditions (1.3). Clearly

ϕ(x, λ) = (λ− h2)C(x, λ) + (h3 − λh1)S(x, λ).
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The arguments for obtaining the asymptotic formulas of S(x, λ) and C(x, λ) are sim-

ilar to that of [38]. Note that by changing x to π − x one can obtain the asymptotic

form of ψ(x, λ) and ψ′(x, λ). �

By applying the similar calculations of [1, 38], we find that

ρn = n− 2 +
θn

n− 2
+
κn
n
, (2.14)

where

κn = o(1), θn =
(−1)(n+1)

2
(ω1 + ω2 cos 2d(n− 2)) ,

and

ω1 = a

(
H1 + h1 −

1

2

∫ π

0

q(t) dt

)
− b

2
, ω2 = − b

2
.

3. Main results

In this section the uniqueness theorem for Eqs. (1.1)–(1.3) is given. We need

some lemma and technical notation to prove our main result. The boundary value

problem L = L(q;hi;Hi; d) is defined with the operator A : H → H. We now

consider boundary value problems L̃ := L(q̃;hi;Hi; d), L1 := L(q;hi;Hi; d), and L̃1 :=

L(q̃;hi;Hi; d), for i = 1, 2, 3, by the same approach with operators Ã, A1, and Ã1

respectively, where H1 6= H1. Suppose that θ(x, λ) is the solution of (1.1) satisfying

in the initial conditions θ(π, λ) = H2−λ, θ′(π, λ) = λH1−H3 and the jump conditions

(1.3). Define φj(λ) := W (ϕj(x, λ), θj(x, λ)), and φ̃j(λ) := W (ϕ̃j(x, λ), θ̃j(x, λ)), for

j = 1, 2.

Lemma 3.1. If L(q;hi;Hi; d) and L(q̃;hi;Hi; d), (i = 1, 2, 3), have the same eigen-

values, then φj(λ) = φ̃j(λ), for j = 1, 2.

Proof. From [8] it follows that φ and φ̃ are entire functions of order 1
2 , and conse-

quently, using Hadamard’s factorization theorem [23] are determined up to a multi-

plicative constant by their zeros. Hence there is a constant k such that k =
φj(λ)

φ̃j(λ)
.

Using the asymptotic form of φj(λ) and φ̃j(λ) as a similar form of (2.13) with Hi

replaced by Hi, we obtain k = 1 + O( 1
ρ ). Letting ρ → ∞, we obtain k = 1 and so

φj(λ) = φ̃j(λ). �

If ψn(x) := ψ(x, λn) is another eigenfunction of L satisfying in the initial conditions

(2.6), then ϕn(x) and ψn(x) are linearly dependent for n ∈ N. So, we have

ψn(x) = knϕn(x), x ∈ [0, d) ∪ (d, π], (3.1)
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where kn is a real number. Define ϕ̃n(x), ψ̃n(x) and k̃n in a similar manner. From

this on, we assume that Λ0 ⊆ N is a finite set and Λ = N\Λ0.

Lemma 3.2. If L1 and L̃1 have the same eigenvalues and, as well as, λn = λ̃n for

all n ∈ Λ, where λn and λ̃n are the eigenvalues of L and L̃, respectively, then kn = k̃n

for all n ∈ Λ.

Proof. Define δj(λ) := W (ψj(x, λ), θj(x, λ)). It is easy to see that δj(λ) is independent

of x. From definition of φ, θ and ψ it follows that{
W (ϕjn(x), ψjn(x)) = 0,

W (ϕjn(x), θjn(x)) = φj(λn),
(3.2)

for j = 1, 2. The above linear system has a unique solution

ϕjn(x) =
ψjn(x)φj(λn)

δj(λn)
, ϕ′jn(x) =

ψ′jn(x)φj(λn)

δj(λn)
. (3.3)

Similarly we obtain

ϕ̃jn(x) =
ψ̃jn(x)φ̃j(λ̃n)

δ̃j(λ̃n)
, ϕ̃′jn(x) =

ψ̃′jn(x)φ̃j(λ̃n)

δ̃j(λ̃n)
. (3.4)

From λn = λ̃n for all n ∈ Λ and Lemma 3.1, we have φj ≡ φ̃j . From definition of

δj(λ) it follows that

δ2(λn) = δ̃2(λn)|x=π = λ2
n(H1 −H1) + λn(H2H1 −H2H1 +H3 −H3) +H3H2 −H2H3.

Thus

kn = k̃n =
λ2
n(H1 − H1) + λn(H2H1 − H2H1 + H3 −H3) +H3H2 −H2H3

φ2(λn)

for all n ∈ Λ. �

Assume that λ is not in the spectrum of (1.1)–(1.3) and let

Sλ := (A− λI)−1|D.

Replace A by Ã and define S̃λ analogously.

We consider the following spaces

K := D(A)	 {Φm : m ∈ Λ0}, (3.5)

K̃ := D(Ã)	 {Φ̃m : m ∈ Λ0}. (3.6)
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Define the transformation operator T : K → K̃ by

TΦn = Φ̃n, (3.7)

where Φn =

 ϕn(x)

R1(ϕn)

R2(ϕn)

 and Φ̃n =

 ϕ̃n(x)

R1(ϕ̃n)

R2(ϕ̃n)

 for n ∈ Λ. By using the as-

ymptotic form of solutions (2.11) and (2.12), it is easy to verify that T is a bounded

operator. From (2.4) we have

(λI −A)Φn = (λ− λn)Φn,

thus we obtain
Φn

(λ− λn)
= −SλΦn.

A similar relation is obviously valid for Φ̃n.

Lemma 3.3. The relation S̃λT = TSλ holds for λ 6= λn, λ̃n and n ∈ N.

Proof. Let F ∈ K, then we can expand F in terms of the set Φn

F (x) =

 f(x)

R1(f)

R2(f)

 =
∑
Λ

fnΦn(x), (3.8)

for n ∈ Λ, where fn = 〈F,Φn〉H
〈Φn,Φn〉H . Let λ be in complex plane which is not an eigenvalue

of A(q;hi;Hi; d), then the operator Sλ exists and can be written as

−SλF (x) =
∑
Λ

fn
λ− λn

Φn(x). (3.9)

If we apply T to the above relation, we obtain

−TSλF (x) =
∑
Λ

fn
λ− λn

Φ̃n(x).

If we apply S̃λ and T to (3.8) respectively, we obtain

−S̃λTF (x) =
∑
Λ

fn
λ− λn

Φ̃n(x).

Then we get

S̃λT = TSλ.

�
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In a general case when the operator L have spectral parameter dependent bound-

ary conditions and discontinuous conditions, we generalize the well-known result of

Hochstadt [13]. We construct the Green’s function for the operator A by using its

solutions ϕ(x, λ) and ψ(x, λ). By applying the Green’s function we now prove our

main theorem.

Theorem 3.4. If A(q;hi;Hi; d) and A(q̃;hi;Hi; d) have the same spectrum and λn =

λ̃n for all n ∈ Λ, then

q(x)− q̃(x) =


∑

Λ0
(ỹ1nϕ1n)′(x), x < d,

∑
Λ0

(ỹ2nϕ2n)′(x), x > d,

(3.10)

a.e. on [0, d)∪ (d, π], where ỹin and ϕin for i = 1, 2 are suitable solutions of l̃y = λny

and ly = λny, respectively.

Proof. By using the same techniques of [1] for −SλΦn = Gn, where Gn(x) = (gn(x),

R1(gn), R2(gn))T ∈ H, by simple calculation we can show that the relation

g′′n(x) + (λ− q(x))gn(x) = ϕn(x), x ∈ (0, d) ∪ (d, π), (3.11)

λ(g′n(0) + h1gn(0))− h2g
′
n(0)− h3gn(0) = 0,

λ(g′n(π) +H1gn(π))−H2g
′
n(π)−H3gn(π) = 0, (3.12)

and

U1(gn) = 0, U2(gn) = 0 (3.13)

are satisfied. The equation (3.11) with (3.12) and (3.13) has the unique solution (i.e.
gn(x)), which can be represented as

gn(x) =



ψ1(x,λ)

∆1(λ)

∫ x
0
ϕ1(t, λ)ϕ1n(t)dt+

ϕ1(x,λ)

∆1(λ)

( ∫ d
x
ψ1(t, λ)ϕ1n(t)dt

+ 1
a2

∫ π
d
ψ2(t, λ)ϕ2n(t)dt

)
, 0 < x < d,

ψ2(x,λ)

∆2(λ)

(
a2
∫ d
0
ϕ1(t, λ)ϕ1n(t)dt+

∫ x
d
ϕ2(t, λ)ϕ2n(t)dt

)
+
ϕ2(t,λ)

∆2(λ)

∫ π
x
ψ2(t, λ)ϕ2n(t)dt, d < x < π.

(3.14)

By considering

G(x, t, λ) =

{
|a|ψ(x,λ)ϕ(t,λ)

∆(λ) , 0 ≤ t ≤ x ≤ π,
|a|ϕ(x,λ)ψ(t,λ)

∆(λ) , 0 ≤ x ≤ t ≤ π,
(3.15)
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where x 6= d and t 6= d the formula (3.14) reduces to

Gn(x) =

 gn(x)

R1(gn)

R2(gn)

 =

 |a|
∫ d
0
G(x, t, λ)ϕ1n(t)dt+ 1

|a|
∫ π
d
G(x, t, λ)ϕ2n(t)dt

R1(ϕn)
λ−λn
R2(ϕn)
λ−λn

 (3.16)

and the function G(x, t, λ) is as defined in (3.15). Using the asymptotic form of

ϕ(x, λ), ψ(x, λ), ∆(λ) for sufficiently large ρ and ρ 6= ρn, we deduce that the Green’s

function G(x, t, λ) is bounded. G(x, t, λ) is a meromorphic function with the eigen-

values λk as its poles [1]. Let Cn be a sequence of circles about the origin intersecting

the positive λ-axis between λn and λn+1. We have

lim
n→∞

∫
Cn

G(x, t, µ)

λ− µ
dµ = 0, λ ∈ int Cn. (3.17)

From residue integration, it follows that

1

2πi

∫
Cn

G(x, t, µ)

λ− µ
dµ = −G(x, t, λ) +

n∑
i=0

ϕi(x <)ψi(x >)

∆̇(λi)(λ− λi)
, (3.18)

where ∆̇(λi) = d
dλ∆(λ)|λ=λi . From (3.17), (3.18) and the Mittag-Leffler expansion

for G(x, t, λ) we obtain

G(x, t, λ) =

∞∑
i=0

ϕi(x <)ψi(x >)

∆̇(λi)(λ− λi)
, (3.19)

where for simplicity x <:= min{x, t} and x >:= max{x, t} and ϕi(x <), ψi(x >) are

eigenfunctions corresponding to the eigenvalues λi, therefore for (f(x), R1(f), R2(f))
T ∈

K, from (3.5), (3.15), (3.16), and Lemma 3.2 we have
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(y(x), R1(y), R2(y))
T

= Sλ (f(x), R1(f), R2(f))
T

= SλF (x)

=




a2 ψ1(x)

∆2(λ)

∫ x
0
ϕ1(t)f(t)dt+

ϕ1(x)

∆2(λ)

(
a2
∫ d
x
ψ1(t)f(t)dt+

∫ π
d
ψ2(t)f(t)dt

)
,

0 ≤ x < d,
ψ2(x)

∆2(λ)

(
a2
∫ d
0
ϕ1(t)f(t)dt+

∫ x
d
ϕ2(t)f(t)dt

)
+

ϕ2(x)

∆2(λ)

∫ π
x
ψ2(t)f(t)dt,

d < x ≤ π,

R1(y)

R2(y)


,

=





∑
Λ

a2ψ1n(x)
∫x
0 ϕ1n(t)f(t)dt+ϕ1n(x)

(
a2 ∫d

x ψ1n(t)f(t)dt+
∫π
d ψ2n(t)f(t)dt

)
∆̇(λn)(λ−λn)

,

0 ≤ x < d,∑
Λ

ψ2n(x)(a2 ∫d
0 ϕ1n(t)f(t)dt+

∫x
d ϕ2n(t)f(t)dt)+ϕ2n(x)

∫π
x ψ2n(t)f(t)dt

∆̇(λn)(λ−λn)
,

d < x ≤ π,

∑
Λ
fnR1(ϕn)
λ−λn∑

Λ
fnR2(ϕn)
λ−λn


,

=




∑

Λ

knϕ1n(x)
(
a2 ∫d

0 ϕ1n(t)f(t)dt+
∫π
d ϕ2n(t)f(t)dt

)
∆̇(λn)(λ−λn)

, 0 ≤ x < d,∑
Λ

knϕ2n(x)
(
a2 ∫d

0 ϕ1n(t)f(t)dt+
∫π
d ϕ2n(t)f(t)dt

)
∆̇(λn)(λ−λn)

, d < x ≤ π,

∑
Λ
fnR1(ϕn)
λ−λn∑

Λ
fnR2(ϕn)
λ−λn


(3.20)

By applying T to both sides of (3.20), we see that

TSλF (x) =




∑

Λ

knϕ̃1n(x)
(
a2 ∫ d

0 ϕ1n(t)f(t)dt+
∫ π
d ϕ2n(t)f(t)dt

)
∆̇(λn)(λ−λn)

, 0 ≤ x < d,∑
Λ

knϕ̃2n(x)
(
a2 ∫ d

0 ϕ1n(t)f(t)dt+
∫ π
d ϕ2n(t)f(t)dt

)
∆̇(λn)(λ−λn)

, d < x ≤ π,∑
Λ
fnR1(ϕ̃n)
λ−λn∑

Λ
fnR2(ϕ̃n)
λ−λn


.

(3.21)

Define

U(x) :=





a2ψ̃1(x)
∫x
0 ϕ1(t)f(t)dt+ϕ̃1(x)

(
a2 ∫d

x ψ1(t)f(t)dt+
∫π
d ψ2(t)f(t)dt

)
∆(λ)

,

0 ≤ x < d,

ψ̃2(x)
(
a2 ∫d

0 ϕ1(t)f(t)dt+
∫x
d ϕ2(t)f(t)dt

)
+ϕ̃2(x)

∫π
x ψ2(t)f(t)dt

∆(λ)
,

d < x ≤ π,
R1(y)

R2(y)


. (3.22)
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By the Mittag-Leffler expansion for U(x), we have

U(x) =



∑
Λ0

a2w̃1n(x)
∫x
0 ϕ1n(y)f(y)dy+z̃1n(x)

(
a2 ∫d

x ψ1n(t)f(t)dt+
∫π
d ψ2n(t)f(t)dt

)
∆̇(λn)(λ−λn)

+
∑

Λ

a2ψ̃1n(x)
∫x
0 ϕ1n(t)f(t)dt+ϕ̃1n(x)

(
a2 ∫d

x ψ1n(t)f(t)dt+
∫π
d ψ2n(t)f(t)dt

)
∆̇(λn)(λ−λn)

,

0 ≤ x < d,∑
Λ0

w̃2n(x)
(
a2 ∫d

0 ϕ1n(t)f(t)dt+
∫d
x ϕ2n(t)f(t)dt

)
+z̃2n(x)

∫π
x ψ2n(t)f(t)dt

∆̇(λn)(λ−λn)

+
∑

Λ

ψ̃2n(x)
(
a2 ∫d

0 ϕ1n(t)f(t)dt+
∫d
x ϕ2n(t)f(t)dt

)
+ϕ̃2n(x)

∫π
x ψ2n(t)f(t)dt

∆̇(λn)(λ−λn)
,

d < x ≤ π,

∑
n∈N

fnR1(ϕ̃n)
λ−λn∑

n∈N
fnR2(ϕ̃n)
λ−λn



.

The second term of the above expression is TSλF , as given in (3.21), in the first

term, w̃n(x) represents ψ̃(x) and z̃n(x) represents ϕ̃(x) evaluated at λn. Hence

S̃λTF (x) = U(x)−



∑
Λ0

a2w̃1n(x)
∫x
0 ϕ1n(t)f(t)dt+z̃1n(x)

(
a2 ∫d

x ψ1n(y)f(y)dy+
∫π
d ψ2n(t)f(t)dt

)
∆̇(λn)(λ−λn)

,

0 ≤ x < d,∑
Λ0

w̃2n(x)
(
a2 ∫d

0 ϕ1n(t)f(t)dt+
∫d
x ϕ2n(t)f(t)dt

)
+z̃2n(x)

∫π
x ψ2n(t)f(t)dt

∆̇(λn)(λ−λn)
,

d < x ≤ π,

∑
Λ0

fnR1(ϕ̃n)
λ−λn∑

Λ0

fnR2(ϕ̃n)
λ−λn


.

(3.23)

The right and left hand side of (3.23) is in the domain S̃λ. Therefore, both sides of
(3.23) are continuous. By using (3.20) and differentiation of the right-hand side of
(3.23), for 0 ≤ x < d we obtaina2ψ̃′1(x)

∫ x
0
ϕ1(t)f(t)dt+ ϕ̃′1(x)

(
a2
∫ d
x
ψ1(t)f(t)dt+

∫ π
d
ψ2(t)f(t)dt

)
∆(λ)

−
∑
Λ0

a2w̃′1n(x)
∫ x
0
ϕ1n(t)f(t)dt+ z̃′1n(x)

(
a2
∫ d
x
ψ1n(t)f(t)dt+

∫ π
d
ψ2n(t)f(t)dt

)
∆̇(λn)(λ− λn)


+

 ψ̃1(x)ϕ1(x)− ϕ̃1(x)ψ1(x)

∆(λ)
−
∑
Λ0

w̃1n(x)ϕ1n(x) + z̃1n(x)ψ1n(x)

∆̇(λn)(λ− λn)

 f(x).

An inspection of the term in the second set of braces shows that it vanishes identically.
To do that, one merely computes the residue at each λn and observes that it becomes
zero. One can differentiate the expression in the braces in the last expression and
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then from (3.23) we obtain

Tf(x) =

 ψ̃1(x)ϕ1(x)− ϕ̃1(x)ψ1(x)

∆(λ)
−
∑
Λ0

w̃1n(x)ϕ1n(x) + z̃1n(x)ψ1n(x)

∆̇(λn)(λ− λn)

 f(x)

−
∑
Λ0

a2w̃1n(x)
∫ x
0
ϕ1n(t)f(t)dt+ z̃1n(x)

(
a2
∫ d
x
ψ1n(t)f(t)dt+

∫ π
d
ψ2n(t)f(t)dt

)
∆̇(λn)

.

(3.24)

The operator T is independent of λ. To compute the value of the expression in the

braces in (3.24) we let λ→∞. Using the asymptotic formulas, we see that the term

in the braces reduces to unity. To simplify the second term in (3.24) we recall that

ψ1n = knϕ1n, ψ2n = knϕ2n and from (2.1),

|a|
∫ d

0

ψ1n(t)f(t)dt+
1

|a|

∫ π

d

ψ2n(t)f(t)dt

+
|a|
r1
R1(ψ1n)R1(f) +

1

r2|a|
R2(ψ2n)R2(f) = 0.

Then from (3.8), for 0 ≤ x < d we get

Tf(x) =f(x)−
1

2

∑
Λ0

ỹ1n(x)

∫ x

0

ϕ1n(t)f(t)dt

+
∑
Λ0

fnknz̃1n(x)

∆̇(λn)

( |a|
r1
R1(ψ1n)R1(ϕ1n) +

1

r2|a|
R2(ψ2n)R2(ϕ2n)

)
, (3.25)

where
1

2
ỹ1n(x) = a2 w̃1n(x)− knz̃1n(x)

∆̇(λn)
.

By applying the similar computation for d < x ≤ π we obtain

Tf(x) =f(x) +
1

2

∑
Λ0

ỹ2n(x)

∫ π

x

ϕ2n(t)f(t)dt

+
∑
Λ0

fnw̃2n(x)

∆̇(λn)

( |a|
r1
R1(ψ1n)R1(ϕ1n) +

1

r2|a|
R2(ψ2n)R2(ϕ2n)

)
,

where
1

2
ỹ2n(x) =

w̃2n(x)− knz̃2n(x)

∆̇(λn)
.

Now, from Lemma 3.3, we conclude that

ÃTF = TAF. (3.26)
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Suppose that F = Φn (n ∈ Λ) then we get fm = 〈Φn,Φm〉H
〈Φm,Φm〉H = 0, for m ∈ Λ0. For left

and right side of (3.26) we get

ÃTΦn =Ã



{
ϕ1n − 1

2

∑
Λ0
ỹ1m

∫ x
0
ϕ1m(t)ϕ1n(t)dt, 0 ≤ x < d,

ϕ2n + 1
2

∑
Λ0
ỹ2m(x)

∫ π
x
ϕ2m(t)ϕ2n(t)dt, d < x ≤ π,

R1(ϕ̃n)

R2(ϕ̃n)

 ,

=



{
−ϕ′′1n + q̃ϕ1n − 1

2

∑
Λ0

˜̀
(
ỹ1m

∫ x
0
ϕ1m(t)ϕ1n(t)dt

)
, 0 ≤ x < d,

−ϕ′′2n + q̃ϕ2n + 1
2

∑
Λ0

˜̀
(
ỹ2m(x)

∫ π
x
ϕ2m(t)ϕ2n(t)dt

)
, d < x ≤ π,

R′1(ϕ̃n)

R′2(ϕ̃n)



=




−ϕ′′1n + q̃ϕ1n − 1

2

∑
Λ0

˜̀ỹ1m

∫ x
0
ϕ1m(t)ϕ1n(t)dt

+ 1
2

∑
Λ0

2ỹ′1m(ϕ1mϕ1n) + ỹ1m(ϕ1mϕ1n)′, 0 ≤ x < d,

−ϕ′′2n + q̃ϕ2n + 1
2

∑
Λ0

˜̀ỹ2m

∫ π
x
ϕ2m(t)ϕ2n(t)dt

+ 1
2

∑
Λ0

(−2)ỹ′2m(ϕ2mϕ2n) + ỹ2m(ϕ2mϕ2n)′, d < x ≤ π,

R′1(ϕ̃n)

R′2(ϕ̃n)


(3.27)

and

TAΦ1n =



{
−ϕ′′1n + qϕ1n − 1

2

∑
Λ0
ỹ1m

∫ x
0
ϕ1m`ϕ1n, 0 ≤ x < d,

−ϕ′′2n + qϕ2n + 1
2

∑
Λ0
ỹ2m

∫ π
x
ϕ2m`ϕ2n, d < x ≤ π,

R′1(ϕ̃n)

R′2(ϕ̃n)



=




−ϕ′′1n + qϕ1n − 1

2

∑
Λ0
ỹ1m

∫ x
0
ϕ1n`ϕ1m

− 1
2

∑
Λ0
ỹ1m(ϕ1nϕ

′
1m − ϕ1mϕ

′
1n), 0 ≤ x < d,

−ϕ′′2n + qϕ2n + 1
2

∑
Λ0
ỹ2m

∫ π
x
ϕ2n`ϕ2m

+ 1
2

∑
Λ0
ỹ2m(ϕ2nϕ

′
2m − ϕ2mϕ

′
2n), d < x ≤ π,

R′1(ϕ̃n)

R′2(ϕ̃n)


.

(3.28)

Note that∑
Λ0

ỹ1m

∫ x

0

ϕ1n`ϕ1m =
∑
Λ0

ỹ1m

∫ x

0

λmϕ1mϕ1n

=
∑
Λ0

λmỹ1m

∫ x

0

ϕ1mϕ1n

=
∑
Λ0

˜̀̃y1m

∫ x

0

ϕ1mϕ1n
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and ∑
Λ0

ỹ2m

∫ π

x

ϕ2n`ϕ2m =
∑
Λ0

˜̀̃y2m

∫ π

x

ϕ2mϕ2n.

Using (3.26) we find that

q(x)− q̃(x) =

{ ∑
Λ0

(ỹ1mϕ1m)′, 0 ≤ x < d,∑
Λ0

(ỹ2mϕ2m)′, d < x ≤ π.

�

Corollary 3.5. If Λ0 is empty, then T is a unitary operator and A = Ã. Hence q = q̃

in L2(0, π).

4. Conclusion

In this paper, the inverse Sturm–Liouville problems with a transmission and pa-

rameter dependent boundary conditions was studied. For this purpose, a new Hilbert

space by defining a new inner product for obtaining a self–adjoint operator was de-

fined. So, the asymptotic form of solutions, eigenvalues and eigenfunctions of this

problem was obtained. Finally, we formulated the Hochestadt’s result based on trans-

formation operator for inverse Sturm–Liouville problems.
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