تعداد نشریات | 44 |
تعداد شمارهها | 1,323 |
تعداد مقالات | 16,270 |
تعداد مشاهده مقاله | 52,954,067 |
تعداد دریافت فایل اصل مقاله | 15,624,723 |
Existence and multiplicity of positive solutions for a coupled system of perturbed nonlinear fractional differential equations | ||
Computational Methods for Differential Equations | ||
مقاله 4، دوره 1، شماره 1، مهر 2013، صفحه 39-54 اصل مقاله (154.29 K) | ||
نوع مقاله: Research Paper | ||
نویسندگان | ||
Kazem Ghanbari؛ Yousef Gholami | ||
Sahand University of Technology | ||
چکیده | ||
In this paper, we consider a coupled system of nonlinear fractional differential equations (FDEs), such that both equations have a particular perturbed terms. Using emph{Leray-Schauder} fixed point theorem, we investigate the existence and multiplicity of positive solutions for this system. | ||
مراجع | ||
[1] B. Ahmad, Juan J. Nieto, Existence results for a coupled system of nonlinear fractional differential equations with three point boundary conditions, Computers and Mathemat- ics with Applications 58 (2009), 1838-1843. [2] Z. Bai, Existence of solutions for some third-order boundary-value problems, Electronic Journal of Differential Equations No. 25 (2008) 1-6. 54 KAZEM GHANBARI AND YOUSEF GHOLAMI [3] K. Ghanbari, Y. Gholami, Existence and multiplicity of positive solutions for m-point nonlinear fractional differential equations on the half line, Electronic Journal of Differ- ential equations No. 238 (2012) 1-15. [4] K. Ghanbari, Y. Gholami, Existence and nonexistence results of positive solutions for nonlinear fractional eigenvalue problem, Journal of Fractional Calculus and Applications Vol.4 No.2 (2013) 1-12. [5] K. Ghanbari, Y. Gholami, H. Mirzaei, Existence and multiplicity results of positive solutions for boundary value problems of nonlinear fractional differential equations, Dynamics of Continuous, Discrete and Impulsive Systems, Series A: Mathematical Analysis 20 (2013) 543-558. [6] A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and Applications of fractional Differential Equations, North-Holland mathematics studies, Elsvier science 204 (2006). [7] K. Q. Lan, Multiple positive solutions of semilinear differential equations with singu- larities, J. Lond. Math. Soc. 63 (2001) 690-704. [8] K. S. Miller, B. Ross, An Introduction to fractional calculus and fractioal differential equation, John Wiley, New York (1993). [9] I. Poudlobny, Fractional Differential Equations, Mathematics in Science and Applica- tions Academic Press 19 (1999). [10] M. ur Rehman, R. A. Khan, A note on boundary value problems for a coupled system of fractional differential equations, Computers and Mathematics with Applications 61(2011) 2630-2637. [11] S. Zhang, Positive solutions for boundary value problem of nonlinear fractional differ- ential equations, Electronic Journal of Differential Equations 36 (2006) 1-12. [12] S. Liang, J. Zhang, Existence of multiple positive solutions for m-point fractional bound- ary value problems on an infinite interval, Mathematical and Computer modelling 54 (2011) 1334-1346. [13] S. Zhang, Unbounded solutions to a boundary value problem of fractional order on the half-line, Computers and mathematics with Applications 61 (2011) 1079-1087. [14] X. Zhao, W. Ge, Unbounde solutions for a fractional boundary value problem on the infinite interval, Acta Appl Math 109 (2010) 495-505. [15] S. Zhang, Existence of positive solutions for some class of fractional differential equa- tions, J. Math. Anal. Appl 278 (2003) 136-148. [16] S. Zhang, G. Han, The existence of a positive solution for a nonlinear fractional differ- ential equation, J. Math. Anal. Appl 252 (2000) 804-812. [17] X. Zhang, L. Liu, Y. Wu, Multiple positive solutions of a singular fractional differential equation with negatively perturbed term, Mathematical and Computer Modelling 55 (2012) 1263-1274. [18] Y. Zhang, Z. Bai, T. Feng, Existence results for a coupled system of nonlinear fractional three-point boundary value problems at resonance, Computers and Mathematics with Applications 61 (2011) 1032-1047. | ||
آمار تعداد مشاهده مقاله: 4,371 تعداد دریافت فایل اصل مقاله: 1,904 |