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1. INTRODUCTION

During 1695 to 20th century, three hundred years after foundation of frac-
tional calculus nobody expected that this wonderful branch of calculus intro-
duces applicable theory in almost all fields such as basic sciences, engineering,
social sciences, medicine, economics, dynamical processes and so on (see more
details in monographes [6, 9, 10]). Every interested researcher can find a large
number of attractive subjects in various fields of fractional calculus and related
applications such as solvability, existence and multiplicity of positive solutions
for given boundary value problems of fractional differential equations. For
more details see [2, 3, 4, 5, 8, 12, 13, 14, 15, 16] and references therein.

Coupled systems of differential equations arise naturally in extensive vol-
ume of scientific problems such as dynamical systems, social researches and
biological relation between different kinds of animals such as prey and predator
problem (see [1, 11, 18] and references cited therein).

To the best of our knowledge, there are a few papers concerning existence
and multiplicity of positive solutions for coupled systems of nonlinear frac-
tional differential equations with negative perturbed term. X. Zhang et. al.
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[17] considered the existence and multiplicity of positive solutions for per-
turbed boundary value problem of the following form

{ —Dgru(t) =p(6)f(tu(t)) —q(t), 0<t<1, ac(23)
u(0) =u (0) =u(l) =0,

where Dg, is Riemann — Liouville fractional derivative of order a.
In this paper we consider a coupled system of perturbed fractional differen-
tial equation of the form

{ 2D u0 =100 u0) ~m, te (0 w
“Dyrv(t) = b(t)g(u(t),v(t)) —p2(t), o, B €(2,3) '
with boundary conditions

1/1(()) = ()“: v(0) / }

w(0)+u (0)=0=v(0)+v (0) (1.2)

w (1) +u' (1) =0=12(1)+0"(1)

where, D, is Caputo fractional derivative of order o and p1, p2 are perturbed
terms.
We assume the following conditions hold throughout this paper:

(Hy) a,b:]0,1] — (0,00) and fol a(s)ds , fol b(s)ds < 0.

(H2) f,g € C(]0,+00) x [0,400), (0,400)). Particularly f(0,0) and g(0,0)
do not vanish identically for ¢ € (0,1).

(H3) p;:[0,1] = [0,+00) and p; € L(0,1).

2. PRELIMINARY MATERIALS

In this section, we first state some fundamental definitions and lemmas from
fractional calculus and then, considering fixed point theory, we represent the
Leray — Schauder fixed point index theorem and some related lemmas.

Definition 2.1. [6] The Riemann — Liouville fractional integral of order
a > 0 for given integrable function u : (0,1) — R* is defined by

S = ti(t_s)a_lus s
poutt) = [ i u(s)as. (2.1)

Definition 2.2. [10] The Caputo fractional derivative of order « > 0 for given
function v € C™((0,1),RT)(n € ZT U0) is defined as follow

t —s n—a—1
‘Dg.u(t) = /0 (tr(n)_a)u(”)(s)ds, n=[a]+1(n g Z"U0) (2.9)

u™M(t), n=a(neZU0).
c[v)
EBE



CMDE Vol. 1, No. 1, 2013, pp. 39-54 41

Lemma 2.3. [6] Assume u € C"[0,1] , Dg, € C(0,1) N L(0.1) for a > 0.
Then

I8.°DSu(t) = u(t) + 1 + cat + .. + cpt" L

Moreover, fractional differential equation

D2 u(t) =0

has the unique solution

u(t) =c1+cot + ..+ et
, where n = [o] + 1 and for every i =1,2,..,n; ¢; € R.

Lemma 2.4. Let h € C(0,1) such that 0 < fol h(s)ds < +oo. Then the
boundary value problem

D2 u(t) = h(t), t € (0,1),a € (2,3)

u(0) =0, (2.3)
u' (0) +u” (0) =0,
u (1) 44" (1) =0,
has the unique solution
1
u(t) = /0 G(t,s)h(s)ds, (2.4)
where
2t—t*) [(a=1)(1—5)*2+ (a—1)(a—2)(1—s)*?]
+(t—-s)1 0<s<t<1
G(t,s) = T(a)

(2 — ) [(a — (1~ )22 + (@ (o~ 2)(1 - 5)>7]
0<t<s<l.
(2.5)

The function G(t,s) is called the Green's function of boundary value problem
Proof. Using Lemma 2.3, we can reduce the equation
“Dgru(t) = h(t), t € (0,1),a € (2,3)
to the following integral equation
bt —s)ot

u(t) = —co — 1t — caot? —i—/o Wh(s)ds. (2.6)
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Now considering the first boundary condition «(0) = 0, we find that ¢y = 0.
Using second boundary condition u'(0)+u" (0) = 0, we deduce that ¢y = —3c1.
Finally imposing the last boundary condition « (1) +u" (1) = 0, we find

r 1 (1-— s)o‘_2 + (@ —2)(1 — 5)0‘_3
2 _/O 2T ()

Substituting the constant coefficients ¢y, ¢1, ¢z in (2.6), we find

C():O, Cy = —

h(s)ds.

1 _ 42 a — _Sa—2 a— a— _Sa—S
u(t) = / (2 — 1) [(a )1~ 5) 2F(+a)< Da=2 =9, 0
4 /0 t 2}32:)_ h(s)ds
- 2) [(a=1)(1 =52+ (a—1)(a—2)(1 —s)*?]
7/0 3T (a) h(s)ds

t —1
(t—s)"
N /1 2t =) [(a = 1)1 = 5)* 2+ (@ — 1) (e — 2)(1 — 5)*7?]
t 2l ()
1
:/ G(t, s)h(s)ds
0
Construction procedure of coefficients c¢g, c¢1, c2, shows that the boundary

value problem (2.3) has the unique solution (2.4). This completes the proof.
O

Lemma 2.5. The Green's function (2.5) has the following properties:
(Py) for every t,s € (0,1), we have G(t,s) >0, G(t,s) € C((0,1) x (0,1)).
(Py) for all t,s € (0,1), 8G(t ) > .

Proof. the proof is immediate by the construction of Green's function in
(2.5). 0

Lemma 2.6. There exist a positive function v(s) € C(0,1), such that:

13
tglL;I;]G(t ,8) = (s) e G(t,s), p.a €[ 7]

P <q
Proof. By definition of the Green's function G(t,s) in (2.5), we assume:

(2t —#*) [(a = 1)(1 = 9)* 2 4 (@ = 1)(a = 2)(1 — 5)*~7]
2I' ()

g1(t,s) =

=
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and
2t—t)[(a—-1)(1 =952+ (a—1)(a—2)(1 —s)*3]
2T ()

g2(t,s) = ,t<s.
Hence monotonic property of G(¢,s) in second part of Lemma 2.5 insures
that, both of functions g1 (¢, s) and go(t, s) are increasing with respect to first
variable t. So we have:

L @Cp=p) [(e=1D(A =9+ (a=1)(a=2)(1 = 5)*]

By 2 3(0)
(p—s)*
T o)
(=11 =52+ (a=D(a=2)(1-5)* 3+ (1—s)"
tren[%,)ﬁ gu(t,s) < 2T () '
Also
. (2p—p?) [(a— 1)1 —5)* 2+ (« — 1) — 2)(1 — 5)*7]
By 209 2 () |
(a=1)(1 =52+ (= 1)(a—2)(1 —5)*3
oy o2l s) < 2 (a) |
Setting
o) = m(s)
v(s) = M(s)
where
m(s) = tren[zi)g]{gl(t’ 5)792(t7 S)} = 92(p7 5)7
M(s) = tgl[%{gl(tas)792(t>8)} =qi(L,s),

we conclude that for s € (0,1)

2 (s) = 2p—pH)[(a—1)(1—5)* 2+ (o — 1) (a—2)(1 — 5)>~7]
(=11 =s) 2+ (a=1(a=2)(1—-s)* 3+ (1—-s)*
(2.7)

Clearly we can observe that v(s) is a positive and continuous function in (0, 1),
which completes the proof. O

Remark 2.7. From definition of ~(s) in (2.7), simple calculation shows that
~v(s) > 7/32.

)
EIE
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Remark 2.8. Consider the following boundary value problem:

“Dg u(t) = 2p(1)

ugo)z (2.8)
u'(0) +u’ (0) =0,
u (1) 44" (1) = 0.

From Lemma 2.4, we know that boundary value problem (2.8) has the unique
solution

1
w(t) = 2/0 G(t,s)p(s)ds

Now considering the boundary value problem

*Dg.u(t) = at) f(v(t), (u—w)(1)) + p(?)
u(0) = (2.9)
u (0 )+ ( ) =0,
(1) +u" (1) =0,
by (H2), it is clear that for every ¢ € (0,1), wu(t) > w(t). So if z(¢) is a
positive solution of BVP (2.9), then by linear property of fractional differential
operators, (z —w)(t) is the positive solution of the following BVP

‘Dru(t) = a(t) f(v(t),u(t)) — p(t)
u(0) =0, (2.10)
u'(0) +u (0) =0,
u' (1) +u" (1) = 0,
Thus, in order to investigate positive solutions of the BVP (2.10), it is enough
to find the positive solutions of the BVP (2.9).

In this part, first we introduce the following Banach space. Let E = C[0, 1]
with the max-norm

= mae o).

Now assume that special Banach space of this investigation and its norm,
defined as follow:

B=ExE, ||(u,v)|l = [full +lv]l, (2.11)
also the partial order of Banach space B, is given by

(u1,u2) < (v1,v2)
80
(o] ¢
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when

ul(t) S Ul(t) s UQ(t) S ’Ug(t)

for (ul,uQ), (Ul,UQ) €B, te (0, 1).
Let

1
T\:B—E, Ti(u,v)= /0 G(t,s)[a(s)f(v(s), (u—w)(s)) + pi(s)]ds,

1
Ty:B—E, Ty(uv)= / G(t, 5)[b(s)g(u(s), (v — w)(s)) + pa(s)]ds,
0
be two Hammerstein integral operators and define
T:B— B, T(u,v) = (T1(u,v), Ta(u,v)). (2.12)
Finally we define cone K C B as follows
min u(t) > - ul

K = < (u,v) € B | (u(t),v(t)) > 0,t € (0, 1)7t6[p,q]

mi t) > —
in o(t) > o o]

EN|

(2.13)
Lemma 2.9. Assume that the conditions (Hy) — (Hs) hold. Then T(K) C K.

Proof. From definition of Hammerstein integral operators 17, 15, also by def-
inition of cone K in (2.13), obviously we can see that for every (u,v) € K:

Ti(u,v), To(u,v) > 0. (2.14)
Using (2.12) it is clear that T'(u,v) > 0. Also for all (u,v) € K, we have:

tg%;r;]Tl u,v) = tren;r;]/ G(t,s) a(s)f(v(s), (u —w)(s)) + pi(s)]ds
= tg[I;I;}G(t 8) [a(s) f(v(s), (u —w)(s) +pi(s)] ds

1

> T [ max G(t, 5) [a(s) F(0(5), (u — w)(s) + pr ()] ds

32 Jo telo.1]
1
> 3723[3?1% [ Glt5) [0 (0(5), (w = w)(3) + i ()] ds
7
= 372”T1(U7U)H
(2.15)
[ ]]
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Similarly, we can show that for every (u,v) € K

7
in T > —||T¢ . 2.16
in To(v,v) 2 g5 [[To(w, )| (2.16)
It follows from (2.14)-(2.16) that if (u,v) € K, then T'(u,v) € K. This
completes the proof. O

Lemma 2.10. Suppose that conditions (Hy) — (Hs3) hold. Then the integral
operator T : K — K, is completely continuous.

Proof. First of all, by Lemma 2.9 we conclude that, operator T': K — K is
well defined. Now in the following three steps, we show that T': K — K is
completely continuous:
(S1) Uniformly boundedness of T'.
(S2) Continuity of 7.
(S3) Equicontinuity of 7.
(PS1) Let Q C K is bounded. Thus there exist a positive constant M such
that for all (u,v) € Q, we have ||(u,v)|| < M. Equivalently we have
[lul], ||v]] < M. Assume
Ly = max (a(t)f(v(t), (u—w)(t)) +pi(t)) + 1,

t€[0,1]
u,v€(0,M]

so for (u,v) € Q, we have

1
Ty (u,v)] = /0 G(t, 5) [a(3) £ (s, 0(s), (u — w)(s)) + p1(s)] ds

: (2.17)
< L1/ G(t,s)ds < +oo.
0
Hence T is uniformly bounded on 2.
(PSs) Consider the sequence {(uy,v,)} C Q where
li_)m (Un,vn) = (u,v) € Q. (2.18)

Since fol [a(s)f(v(s), (u—w)(s))+ pi(s)]ds < oo, by Lebesgue Domi-
nated Convergence theorem, we deduce that when n — oo

1
/0 (a(8) (vn(s)s (tn — w)(s)) + pa (s)] ds
1
- / [a(s) £ (u(5), (1 — w)(s)) + pa(s)] ds — 0.

Hence
|11 (tn, vpn) — T1(u,v)|| = 0, (n— o0). (2.19)

Thus T is continuous on 2.

=
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(PS3) For (u,v) € Q and for all t1,t2 € [0,1] with ¢; < t2 and from (PS1),
we have:

1Ty (ulta), v(t2)) — T (u(tr), v(t))ll
< /0 [G(ta,s) = G(t1, 8)] [a(s) f(v(s), (u — w)(s)) + pr(s)] ds

1
§ Ll /0 [G(tg, S) - G(tl, S)] ds
+< L1/0 (Gltays) — Gt, )] ds + Ly / [Glts, s) — Glt, 5)] ds

=+ L1 /t1 [G(tg, S) — G(th S)] dS

— I, /tl [(ta — £1)(2 — (t2 + )] [(@ — 1)(1 — 8)*2 + (@ — 1)(a — 2)(1 — 5)*3]
0

2la ds
+ Ly /Otl [(t2 — 8)“‘21on5;1 -9
+ L / (= 1) 2 + i) e~ DO 9"+ (= D= DA =9,
+ I /tt %ds
+Ly / [(t2 = 81)(2 = (t2 + )] (o = 1)(21F(5)>a2 o= D@-2)(1 -9
Thus, if uniformly ¢; — £, then
|1 (u(ta), v(ta)) — Ti(u(tr), v(t1))|| — 0. 20

Hence Hammerstein integral operator 77 is equicontinuous on §2.

(PS1) — (PS3) and Arzela-Ascoli theorem, show that integral operator T} :
K — K is completely continuous. Similarly we can prove that, integral oper-
ator Tp : K — K is also completely continuous, which implies that operator
T : K — K is completely continuous. The proof is complete. O

Theorem 2.11 (Leray-Schauder Fixed Point Index). [7] Assume that
K is a cone in Banach space X. Let D be an open bounded subset of X with
Dg =DNK # @ and D # K. Suppose that T : D — K is a compact
map such that for all x € 0Dk, x # Tx. Then the following results hold:

(2) If ||Tz|| < ||z|| for x € Dk, then ig(T,Dg) = 1.
(i7) If there exist e € K\{0} such that x # Tx + Xe for all x € 0Dk and
all X > 0, then ig(T, Dk ) = 0.
)
EIE
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(iii) Let Dg be open in X such that Dy C Dy. If ig(T,Dg) = 1 and
ik(T,Dox) = 0, then T has a fized point in Dg\Dox. The same
result holds if ix(T,Dg) =0 and ix (T, Dox) = 1.

The sets K, Q,, (1, v > 0) are defined as follows:

Ky = {(u,0) € K ¢ [[(u,0)]] < i+ v}

Do = {(u,0) € K+ 1(u,0) < o+ 1)}

= {(u,v) : *H(u o)l < 1w, v) < 312(M+ V)t

where [ : K — [0, +00) with I(u,v) = min{(u(t) + v(t)) : t € [p, q]}.

Lemma 2.12. [7] The set ), defined above has the following properties;

(a) Q. is open with respect to K.
(b)K7( )CQM’VCK

(¢) (u,v) € 0, if and only if l(u,v) = 55(p+v).
(d) If (u,v) € 0., then 32(,u, v) < (u,v) < (u,v) fort € [p,q|.
Remark 2.13. Let

Py = min { LD € g [l e 0,400 ).
fé"”:max{W‘te 0,1],u € [0, 1, v € [0,+oo)},

#y =i { DD g 0,400 € [},
g :max{g(“ﬁ;q;(t)) ‘t € [0,1],u € [0, +00),v € 0, ,,}

Remark 2.14. According to Lemma 2.6, assume that

mg = <4/0 M(s)a(8>d$>’ Ma = (372 ) :

(2.21)
1 -1 7 B
_ (4 / M(s)b(s)ds), M, = < )
0 32
3. MAIN RESULTS
Lemma 3.1. Assume that conditions (Hy) — (Hs) and the conditions
G M A D), () € 00y,
72(#7 ) 32 ,
7 (3.1)
9372(# v) = 32Mb , v # Th(u,v), (u,v) € .,

(<)
EE
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hold. Then ix (T, Q) =
Proof. Suppose that e(t) = (1,1) for t € [0,1]. Thus e € K. We claim that
(u,v) # T(u,v) + Oe, (u,v) € 0, 0> 0.

Otherwise, there exist a (ug, vg) € 0§, and 6 > 0 such that ug = T’ (uo, vo)+6
and vg = Ta(ug, vo)+6. Using condition (3.1) and Lemma 2.12(c), we conclude
that for t € [p, q],

uo(t) —/ G(t,s) [a(s) f(vo(s), (uo — w)(s)) + pi(s)] ds + 0
/ Fvo(s), (o — w)(s))ds + 0

7

Z 3

(1 +v)M, (32/1\4 >+9>372(u+u)+9

Similarly we can prove that vg(t) > 3—2(;H—1/) +6. This implies that [(ug, vg) >

o (1 + v), which is contradiction with Lemma 2.12(c). Hence from Theorem

2.11(ii), we deduce that ix (T,€Q,,) = 0. O

v

Assume that the following condition holds:
w+v

(Hy)
1 v 1
/0 M(s)pi(s) , /O M(s)pa(s)ds < 7

Lemma 3.2. Let conditions (H1) — (Hy4) and the following conditions hold.
5V Sma) U#Tl(u)v)u (U,U) EaKM,U7
gg’y < my, v 7£ TQ(ua U)v (U7U) € aK,u,u-
Then ix (T, K,) =

(3.2)

Proof. Considering notation 2.13 and conditions (3.2), for (u,v) € 0K, , we
have

1
Ti(u.0) = [ G(t.5)[a(e)f(0(6), (u = w)(s) + pr (5)ds
1 1
< [ M) = w)@)ds + [ Mens)ds

<;H—V (/M ) u+v
- 4

ptv (uv

2 2
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This implies that | |77 (u, v)|| < M Similarly we can show that ||T5(u, v)|| <
w. Thus ||T'(u,v)|| < ||(u,v)||. Applying Theorem 2.11(i), we conclude
that i (T, K,,,) = 1. O
Theorem 3.3. Assume that conditions (Hy) — (Hy) are satisfied also one of
the following conditions hold :
(Cl) There exist K1, 2, 13, V1, V2, V3 € (O,+OO) with (:U’lvyl) < 312(/1’277/2)
and (p2,v2) < (u3,v3) such that
7
141,01 142,02 N
fo S may f200 Ly 2 ggMas uF Ti(u,), (4, 0) € Oy,
féj«SyVB S Mg.

Also

7
11,01 142,12
90 < my, g%(ﬂ%’&) > 32Mb7 v 7& TQ(U7U>7 (’LL, U) € 89#2»”27

U3,V
903 ? < my.

(C2) There exist pi1, o, p3, V1, v2,v3 € (0,400) with (p1,v1) < (p2,v2) <
o (13, v3) such that

1% 7 1%
Z%liut,m) > ﬁMm 1527 <mg, u# Ti(u,v), (u,v) € IKyu,,

7
H3,V3 >
?72(#37'/3) - 32Ma'

Also

7
%7(2117”1) > 372Mba 952’112 < mp, v 7& TZ(va)a (ua U) € aKug,uza

7
H3,V3 > — M.
g3*72(#37V3) - 32 b

Then the coupled system (1.1),(1.2) has two positive solutions in K.

Proof. Assume that condition (Cy) holds. We prove that operator T' has two
fixed points (us, vy), (u*,v*) in Ky 1o \Qpuy 0y and 5 05\ Ky, 0, According to
Lemma 3.1 and Lemma 3.2, we have

ix (T, K,LL27V2) =1, ig(T, Qm,l/l) = ig(T, Q,us,lls) = 0.
Using Lemma 2.12(b), we conclude that K, ,, C Ky 0o C Qpugus-

ix (T, KMQ,ZQ\Q;LLW) =ig (T, Kﬂzﬂjz) —ir (T, Qul,lfl) =1

ix (T, Qus,vs\Km,Vz) =ig (T, Qus,lfs) —ir (T, Kuz,lfz) =—L
Thus considering Theorem 2.11(ii7), operator T" has two fixed points (u., vy)
and (u*,v*) in Ky 0y \Qpy, 0y and Q00 \ K, 1, We can prove the same result,
(<)
EE
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when condition (C1) occurs. Using Remark 2.8, we deduce that coupled system
(1.1),(1.2) has two positive solutions in K. This completes the proof. O

Remark 3.4. If in (Cs), f‘”’ T M, is replaced by f4""* > LM, and

33(#1,”1)
> @Mb, then the coupled system

,LL]_ 1/1) - 32
g p 1

372(#'171/1) = 32 (N‘ 1)
(1.1),(1.2) has a third solution (%, ) € K. See more details in Theorem 2.11

7).

H1,v1

T My is replaced by g7

Considering Theorem 3.3, we have the following lemma.

Lemma 3.5. Let the conditions (H1) — (Hy) and one of the following condi-
tions hold :

(D1) There exist uy, pa, v1,v2 € (0, 4+00) with (p1,v1) < 3—72(u2,ug) such that

H1,V1 H2,v2 > M
m, —
fO = as 3%(“27V2) = 39 as

7
7V IU
9" <my, g7 > oM

g 35 (H2,v2) = 32
(D2) There exist py, pa,vi,v2 € (0,+00) with (u1,v1) < (u2,v2) such that

7
//417’/1 > 7M H2,v2 < m
32 (#1,1’1) - 32 @ 0 - @

7
H1,V1 > 7M 2,2 < me.
L) = 32700 Yoo =T

Then the coupled system (1.1), (12) has one positive solution in K.

Remark 3.6. We can prove that if ( ) > 3—72Ma, then u # T1(u,v), (u,v) €
32 v

0Q,,. Alsoif fI"Y < mg, then w # Ti(u,v), (u,v) € 0K, ,. Similarly we
can derive this result for operator T5.(For more details see [7] pp. 694-695. )

4. EXAMPLE

Consider the following fractional coupled system

{ “Dybult) = alt) (v(t), u(t) — pi(0), 1)

Dy, o(t) = b(t)g(u(t),v(t)) — p2(t), t€(0,1)

with boundary conditions
fL/L(O) = O,,: v(0)
W (0) + 4" (0) = 0 =
w(1)4+u (1)=0
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where
10=6sint(v) + us (u,v) € [0,10%] x [0, +00)
Flv,u) = { 1078 sint(v) + ud + 10°(u — 10%), (u, v) € [103,10%] x [0, +00)
106 sin? (v) + u3 + 9.9 x 10, (u,v) € [10%, +00) x [0, +00)
and
lO*SCOSZ(u)+—U% (u,v) € ﬁ)-+oo> [0, 107]
g(u,v) = 1078 cos(u) + v2 +107(v — 107),  (u,v) € [0, ) x (107, 102]
1078 cos?(u) 4+ v2 + (10 — 1) x 10™, (u,v) € [0, +00) x [10%, +00)
also
alt) =20()(1 - 1)}, bt =20())(1 — 1)}
pi(t) =(1-0)7%, po(t)=(1-1)7F
Choosing

pr =100y =102, pz =107,
v =107, 1y =10, w3 =108,

simple calculation shows that condition (Hy) holds as follow

1 1
4 + v 4 + v
/M@MWK H<M4{/M@mmx <22
0 0

ey O
12 373248 231 32 x 106
Ma = 757> a = , My = s b= .
121 66591 1381 3311119

a
(<)
EE
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Now, with direct computation we have

7 10 7 7
> 4= x 1073 > — = .
fv,u) > 35 % 078 > 32(u1+V1)Ma,u€ [32u1,u1],v€ [0, 1]

7
H1,v1 o
So fg%(,ul,m) > 32Ma'

f(v,u) < 1076 + 103 < (u2 + v2)mg, u € [0, ual,v € [0, v9).

So " < my.
7 7 7
fou) > ¢/ 33 105 +9.99 x 10° > §(u3 +v3) My, u € [s=us, pal,

32
v € [0,v3]. So fh>" >l
» sl = (us.vs) ~ 32
7 7 7
g(u,v) > \/5 x 1077 > 3—2(;/4 +uv1) My, wel0,ui],ve [3—21/1,1/1].
11,01 X
%(Ml,lﬂ) 32
g(’LL, U) < 10_8 + V10 < (/‘LQ + Z/Q)mba S [07M2]’U € [07 VQ]'

Hence gi*"* < my,.

M,

Hence g My.

7 7 7
g(u,v) > ”ﬁ x 10* 4+ (V10 — 1) x 10** > 3—2(,u3 + v3) My, u € [0, us],v € [3—2V3,1/3].

7
13,03
Hence 93%(“3’”3) > 3—2Mb.
Using Theorem 3.3 and Remark 3.4 and Remark 3.6, we conclude that operator
T has three fixed points in K. Finally using Remark 2.8 we conclude that
coupled system (4.1),(4.2) has three positive solutions in K.

5. CONCLUSION

In this paper, the existence and multiplicity of positive solutions for coupled
system of nonlinear fractional BVPs with negatively perturbed terms, have
been studied. Employing fixed point technique, existence and multiplicity
results of positive solutions for BVP (2.9), implies the same results for BVP
(2.10).
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