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1. Introduction

During 1695 to 20th century, three hundred years after foundation of frac-
tional calculus nobody expected that this wonderful branch of calculus intro-
duces applicable theory in almost all fields such as basic sciences, engineering,
social sciences, medicine, economics, dynamical processes and so on (see more
details in monographes [6, 9, 10]). Every interested researcher can find a large
number of attractive subjects in various fields of fractional calculus and related
applications such as solvability, existence and multiplicity of positive solutions
for given boundary value problems of fractional differential equations. For
more details see [2, 3, 4, 5, 8, 12, 13, 14, 15, 16] and references therein.

Coupled systems of differential equations arise naturally in extensive vol-
ume of scientific problems such as dynamical systems, social researches and
biological relation between different kinds of animals such as prey and predator
problem (see [1, 11, 18] and references cited therein).

To the best of our knowledge, there are a few papers concerning existence
and multiplicity of positive solutions for coupled systems of nonlinear frac-
tional differential equations with negative perturbed term. X. Zhang et. al.
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[17] considered the existence and multiplicity of positive solutions for per-
turbed boundary value problem of the following form{

−Dα
0+u(t) = p(t)f(t, u(t))− q(t), 0 < t < 1, α ∈ (2, 3)

u(0) = u
′
(0) = u(1) = 0,

where Dα
0+ is Riemann− Liouville fractional derivative of order α.

In this paper we consider a coupled system of perturbed fractional differen-
tial equation of the form{ cDα

0+u(t) = a(t)f(v(t), u(t))− p1(t), t ∈ (0, 1)
cDβ

0+
v(t) = b(t)g(u(t), v(t))− p2(t), α, β ∈ (2, 3)

(1.1)

with boundary conditions
u(0) = 0 = v(0)

u
′
(0) + u

′′
(0) = 0 = v

′
(0) + v

′′
(0)

u
′
(1) + u

′′
(1) = 0 = v

′
(1) + v

′′
(1)

(1.2)

where, cDα
0+ is Caputo fractional derivative of order α and p1, p2 are perturbed

terms.
We assume the following conditions hold throughout this paper:

(H1) a, b : [0, 1] → (0,∞) and
∫ 1
0 a(s)ds ,

∫ 1
0 b(s)ds < ∞.

(H2) f, g ∈ C ([0,+∞)× [0,+∞), (0,+∞)). Particularly f(0, 0) and g(0, 0)
do not vanish identically for t ∈ (0, 1).

(H3) pi : [0, 1] → [0,+∞) and pi ∈ L1(0, 1).

2. Preliminary materials

In this section, we first state some fundamental definitions and lemmas from
fractional calculus and then, considering fixed point theory, we represent the
Leray − Schauder fixed point index theorem and some related lemmas.

Definition 2.1. [6] The Riemann − Liouville fractional integral of order
α > 0 for given integrable function u : (0, 1) → R+ is defined by

Iα0+u(t) =

∫ t

0

(t− s)α−1

Γ(α)
u(s)ds. (2.1)

Definition 2.2. [10] The Caputo fractional derivative of order α > 0 for given
function u ∈ Cn((0, 1),R+)(n ∈ Z+ ∪ 0) is defined as followcDα

0+u(t) =

∫ t

0

(t− s)n−α−1

Γ(n− α)
u(n)(s)ds, n = [α] + 1(n ̸∈ Z+ ∪ 0)

u(n)(t), n = α(n ∈ Z+ ∪ 0).

(2.2)
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Lemma 2.3. [6] Assume u ∈ Cn[0, 1] , Dα
0+ ∈ C(0, 1) ∩ L(0.1) for α > 0.

Then

Iα0+
cDα

0+u(t) = u(t) + c1 + c2t+ ..+ cnt
n−1.

Moreover, fractional differential equation

cDα
0+u(t) = 0

has the unique solution

u(t) = c1 + c2t+ ..+ cnt
n−1

, where n = [α] + 1 and for every i = 1, 2, .., n; ci ∈ R.

Lemma 2.4. Let h ∈ C(0, 1) such that 0 <
∫ 1
0 h(s)ds < +∞. Then the

boundary value problem

cDα
0+u(t) = h(t), t ∈ (0, 1), α ∈ (2, 3)

u(0) = 0,

u
′
(0) + u

′′
(0) = 0,

u
′
(1) + u

′′
(1) = 0,

(2.3)

has the unique solution

u(t) =

∫ 1

0
G(t, s)h(s)ds, (2.4)

where

G(t, s) =
1

2Γ(α)


(2t− t2)

[
(α− 1)(1− s)α−2 + (α− 1)(α− 2)(1− s)α−3

]
+(t− s)α−1, 0 < s ≤ t < 1

(2t− t2)
[
(α− 1)(1− s)α−2 + (α− 1)(α− 2)(1− s)α−3

]
,

0 < t ≤ s < 1.
(2.5)

The function G(t, s) is called the Green′s function of boundary value problem
(2.3).

Proof. Using Lemma 2.3, we can reduce the equation

cDα
0+u(t) = h(t), t ∈ (0, 1), α ∈ (2, 3)

to the following integral equation

u(t) = −c0 − c1t− c2t
2 +

∫ t

0

(t− s)α−1

Γ(α)
h(s)ds. (2.6)
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Now considering the first boundary condition u(0) = 0, we find that c0 = 0.

Using second boundary condition u
′
(0)+u

′′
(0) = 0, we deduce that c2 = −1

2c1.

Finally imposing the last boundary condition u
′
(1) + u

′′
(1) = 0, we find

c0 = 0, c2 = −1

2
c1 =

∫ 1

0

(1− s)α−2 + (α− 2)(1− s)α−3

2Γ(α)
h(s)ds.

Substituting the constant coefficients c0, c1, c2 in (2.6), we find

u(t) =

∫ 1

0

(2t− t2)
[
(α− 1)(1− s)α−2 + (α− 1)(α− 2)(1− s)α−3

]
2Γ(α)

h(s)ds

+

∫ t

0

(t− s)α−1

2Γ(α)
h(s)ds

=

∫ t

0

(2t− t2)
[
(α− 1)(1− s)α−2 + (α− 1)(α− 2)(1− s)α−3

]
2Γ(α)

h(s)ds

+

∫ t

0

(t− s)α−1

2Γ(α)
h(s)ds

+

∫ 1

t

(2t− t2)
[
(α− 1)(1− s)α−2 + (α− 1)(α− 2)(1− s)α−3

]
2Γ(α)

h(s)ds

=

∫ 1

0

G(t, s)h(s)ds.

Construction procedure of coefficients c0, c1, c2, shows that the boundary
value problem (2.3) has the unique solution (2.4). This completes the proof.

�

Lemma 2.5. The Green′s function (2.5) has the following properties:

(P1) for every t, s ∈ (0, 1), we have G(t, s) > 0, G(t, s) ∈ C ((0, 1)× (0, 1)).

(P2) for all t, s ∈ (0, 1), ∂G(t,s)
∂t ≥ 0.

Proof. the proof is immediate by the construction of Green′s function in
(2.5). �

Lemma 2.6. There exist a positive function γ(s) ∈ C(0, 1), such that:

min
t∈[p,q]

G(t, s) ≥ γ(s) max
t∈[0,1]

G(t, s), p, q ∈ [
1

4
,
3

4
], p < q.

Proof. By definition of the Green′s function G(t, s) in (2.5), we assume:

g1(t, s) =
(2t− t2)

[
(α− 1)(1− s)α−2 + (α− 1)(α− 2)(1− s)α−3

]
2Γ(α)

+
(t− s)α−1

2Γ(α)
, s ≤ t
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and

g2(t, s) =
(2t− t2)

[
(α− 1)(1− s)α−2 + (α− 1)(α− 2)(1− s)α−3

]
2Γ(α)

, t ≤ s.

Hence monotonic property of G(t, s) in second part of Lemma 2.5 insures
that, both of functions g1(t, s) and g2(t, s) are increasing with respect to first
variable t. So we have:

min
t∈[p,q]

g1(t, s) ≥
(2p− p2)

[
(α− 1)(1− s)α−2 + (α− 1)(α− 2)(1− s)α−3

]
2γ(α)

+
(p− s)α−1

2Γ(α)
,

max
t∈[0,1]

g1(t, s) ≤
(α− 1)(1− s)α−2 + (α− 1)(α− 2)(1− s)α−3 + (1− s)α−1

2Γ(α)
.

Also

min
t∈[p,q]

g2(t, s) ≥
(2p− p2)

[
(α− 1)(1− s)α−2 + (α− 1)(α− 2)(1− s)α−3

]
2Γ(α)

,

max
t∈[0,1]

g2(t, s) ≤
(α− 1)(1− s)α−2 + (α− 1)(α− 2)(1− s)α−3

2Γ(α)
.

Setting

γ(s) =
m(s)

M(s)
,

where

m(s) = min
t∈[p,q]

{g1(t, s), g2(t, s)} = g2(p, s),

M(s) = max
t∈[0,1]

{g1(t, s), g2(t, s)} = g1(1, s),

we conclude that for s ∈ (0, 1)

γ(s) =
(2p− p2)[(α− 1)(1− s)α−2 + (α− 1)(α− 2)(1− s)α−3]

(α− 1)(1− s)α−2 + (α− 1)(α− 2)(1− s)α−3 + (1− s)α−1
.

(2.7)

Clearly we can observe that γ(s) is a positive and continuous function in (0, 1),
which completes the proof. �

Remark 2.7. From definition of γ(s) in (2.7), simple calculation shows that
γ(s) > 7/32.
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Remark 2.8. Consider the following boundary value problem:

cDα
0+u(t) = 2p(t)

u(0) = 0,

u
′
(0) + u

′′
(0) = 0,

u
′
(1) + u

′′
(1) = 0.

(2.8)

From Lemma 2.4, we know that boundary value problem (2.8) has the unique
solution

w(t) = 2

∫ 1

0
G(t, s)p(s)ds.

Now considering the boundary value problem

cDα
0+u(t) = a(t)f(v(t), (u− w)(t)) + p(t)

u(0) = 0,

u
′
(0) + u

′′
(0) = 0,

u
′
(1) + u

′′
(1) = 0,

(2.9)

by (H2), it is clear that for every t ∈ (0, 1), u(t) ≥ w(t). So if z(t) is a
positive solution of BVP (2.9), then by linear property of fractional differential
operators, (z − w)(t) is the positive solution of the following BVP

cDα
0+u(t) = a(t)f(v(t), u(t))− p(t)

u(0) = 0,

u
′
(0) + u

′′
(0) = 0,

u
′
(1) + u

′′
(1) = 0.

(2.10)

Thus, in order to investigate positive solutions of the BVP (2.10), it is enough
to find the positive solutions of the BVP (2.9).

In this part, first we introduce the following Banach space. Let E = C[0, 1]
with the max-norm

||u|| = max
t∈[0,1]

|u(t)|.

Now assume that special Banach space of this investigation and its norm,
defined as follow:

B = E × E, ||(u, v)|| = ||u||+ ||v||, (2.11)

also the partial order of Banach space B, is given by

(u1, u2) ≤ (v1, v2)
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when

u1(t) ≤ v1(t) , u2(t) ≤ v2(t)

for (u1, u2), (v1, v2) ∈ B, t ∈ (0, 1).
Let

T1 : B → E, T1(u, v) =

∫ 1

0
G(t, s)[a(s)f(v(s), (u− w)(s)) + p1(s)]ds,

T2 : B → E, T2(u, v) =

∫ 1

0
G(t, s)[b(s)g(u(s), (v − w)(s)) + p2(s)]ds,

be two Hammerstein integral operators and define

T : B → B, T (u, v) = (T1(u, v), T2(u, v)). (2.12)

Finally we define cone K ⊂ B as follows

K =

(u, v) ∈ B

∣∣∣∣ (u(t), v(t)) ≥ 0, t ∈ (0, 1),
min
t∈[p,q]

u(t) ≥ 7

32
||u||

min
t∈[p,q]

v(t) ≥ 7

32
||v||

 .

(2.13)

Lemma 2.9. Assume that the conditions (H1)− (H3) hold. Then T (K) ⊂ K.

Proof. From definition of Hammerstein integral operators T1, T2, also by def-
inition of cone K in (2.13), obviously we can see that for every (u, v) ∈ K:

T1(u, v), T2(u, v) ≥ 0. (2.14)

Using (2.12) it is clear that T (u, v) ≥ 0. Also for all (u, v) ∈ K, we have:

min
t∈[p,q]

T1(u, v) = min
t∈[p,q]

∫ 1

0
G(t, s) [a(s)f(v(s), (u− w)(s)) + p1(s)] ds

≥
∫ 1

0
min
t∈[p,q]

G(t, s) [a(s)f(v(s), (u− w)(s) + p1(s)] ds

≥ 7

32

∫ 1

0
max
t∈[0,1]

G(t, s) [a(s)f(v(s), (u− w)(s) + p1(s)] ds

≥ 7

32
max
t∈[0,1]

∫ 1

0
G(t, s) [a(s)f(v(s), (u− w)(s) + p1(s)] ds

=
7

32
||T1(u, v)||.

(2.15)
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Similarly, we can show that for every (u, v) ∈ K

min
t∈[p,q]

T2(u, v) ≥
7

32
||T2(u, v)||. (2.16)

It follows from (2.14)-(2.16) that if (u, v) ∈ K, then T (u, v) ∈ K. This
completes the proof. �
Lemma 2.10. Suppose that conditions (H1) − (H3) hold. Then the integral
operator T : K → K, is completely continuous.

Proof. First of all, by Lemma 2.9 we conclude that, operator T : K → K is
well defined. Now in the following three steps, we show that T : K → K is
completely continuous:

(S1) Uniformly boundedness of T .
(S2) Continuity of T .
(S3) Equicontinuity of T .

(PS1) Let Ω ⊂ K is bounded. Thus there exist a positive constant M such
that for all (u, v) ∈ Ω, we have ||(u, v)|| ≤ M . Equivalently we have
||u||, ||v|| ≤ M . Assume

L1 = max
t∈[0,1]

u,v∈[0,M ]

(a(t)f(v(t), (u− w)(t)) + p1(t)) + 1,

so for (u, v) ∈ Ω, we have

|T1(u, v)| =
∫ 1

0
G(t, s) [a(s)f(s, v(s), (u− w)(s)) + p1(s)] ds

≤ L1

∫ 1

0
G(t, s)ds < +∞.

(2.17)

Hence T1 is uniformly bounded on Ω.
(PS2) Consider the sequence {(un, vn)} ⊂ Ω where

lim
n→∞

(un, vn) = (u, v) ∈ Ω. (2.18)

Since
∫ 1
0 [a(s)f(v(s), (u− w)(s)) + p1(s)] ds < ∞, by Lebesgue Domi-

nated Convergence theorem, we deduce that when n → ∞∫ 1

0
[a(s)f(vn(s), (un − w)(s)) + p1(s)] ds

−
∫ 1

0
[a(s)f(v(s), (u− w)(s)) + p1(s)] ds → 0.

Hence

||T1(un, vn)− T1(u, v)|| → 0, (n → ∞). (2.19)

Thus T is continuous on Ω.
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(PS3) For (u, v) ∈ Ω and for all t1, t2 ∈ [0, 1] with t1 < t2 and from (PS1),
we have:

||T1(u(t2), v(t2))− T1(u(t1), v(t1))||

≤
∫ 1

0

[G(t2, s)−G(t1, s)] [a(s)f(v(s), (u− w)(s)) + p1(s)] ds

≤ L1

∫ 1

0

[G(t2, s)−G(t1, s)] ds

+ ≤ L1

∫ t1

0

[G(t2, s)−G(t1, s)] ds+ L1

∫ t2

t1

[G(t2, s)−G(t1, s)] ds

+ L1

∫ 1

t2

[G(t2, s)−G(t1, s)] ds

= L1

∫ t1

0

[(t2 − t1)(2− (t2 + t1))] [(α− 1)(1− s)α−2 + (α− 1)(α− 2)(1− s)α−3]

2Γα
ds

+ L1

∫ t1

0

[
(t2 − s)α−1 − (t1 − s)α−1

]
2Γ(α)

ds

+ L1

∫ t2

t1

[(t2 − t1)(2− (t2 + t1))] [(α− 1)(1− s)α−2 + (α− 1)(α− 2)(1− s)α−3]

2Γα
ds

+ L1

∫ t2

t1

(t2 − s)α−1

2Γ(α)
ds

+ L1

∫ 1

t2

[(t2 − t1)(2− (t2 + t1))] [(α− 1)(1− s)α−2 + (α− 1)(α− 2)(1− s)α−3]

2Γ(α)
ds.

Thus, if uniformly t1 → t2, then

||T1(u(t2), v(t2))− T1(u(t1), v(t1))|| −→ 0. (2.20)

Hence Hammerstein integral operator T1 is equicontinuous on Ω.

(PS1) − (PS3) and Arzela-Ascoli theorem, show that integral operator T1 :
K → K is completely continuous. Similarly we can prove that, integral oper-
ator T2 : K → K is also completely continuous, which implies that operator
T : K → K is completely continuous. The proof is complete. �

Theorem 2.11 (Leray-Schauder Fixed Point Index). [7] Assume that
K is a cone in Banach space X. Let D be an open bounded subset of X with
DK = D ∩ K ̸= ∅ and DK ̸= K. Suppose that T : DK → K is a compact
map such that for all x ∈ ∂DK , x ̸= Tx. Then the following results hold:

(i) If ||Tx|| ≤ ||x|| for x ∈ ∂DK , then iK(T,DK) = 1.
(ii) If there exist e ∈ K\{0} such that x ̸= Tx + λe for all x ∈ ∂DK and

all λ > 0, then iK(T,DK) = 0.
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(iii) Let D0 be open in X such that D0 ⊂ DK . If iK(T,DK) = 1 and
iK(T,D0K) = 0, then T has a fixed point in DK\D0K . The same
result holds if iK(T,DK) = 0 and iK(T,D0K) = 1.

The sets Kµ,ν ,Ωµ,ν , (µ, ν > 0) are defined as follows:

Kµ,ν = {(u, v) ∈ K : ||(u, v)|| < µ+ ν}

Ωµ,ν = {(u, v) ∈ K : l(u, v) <
7

32
(µ+ ν)}

= {(u, v) : 7

32
||(u, v)|| ≤ l(u, v) <

7

32
(µ+ ν)},

where l : K → [0,+∞) with l(u, v) = min{(u(t) + v(t)) : t ∈ [p, q]}.
Lemma 2.12. [7] The set Ωµ,ν defined above has the following properties;

(a) Ωµ,ν is open with respect to K.
(b) K 7

32
(µ,ν) ⊂ Ωµ,ν ⊂ Kµ,ν .

(c) (u, v) ∈ ∂Ωµ,ν if and only if l(u, v) = 7
32(µ+ ν).

(d) If (u, v) ∈ ∂Ωµ,ν , then
7
32(µ, ν) ≤ (u, v) ≤ (µ, ν) for t ∈ [p, q].

Remark 2.13. Let

fµ,ν
7
32

(µ,ν)
= min

{
f(v(t), u(t))

µ+ ν

∣∣∣∣ t ∈ [p, q], u ∈ [
7

32
µ, µ], v ∈ [0,+∞)

}
,

fµ,ν
0 = max

{
f(v(t), u(t))

µ+ ν

∣∣∣∣ t ∈ [0, 1], u ∈ [0, µ], v ∈ [0,+∞)

}
,

gµ,ν7
32

(µ,ν)
= min

{
g(u(t), v(t))

µ+ ν

∣∣∣∣ t ∈ [p, q], u ∈ [0,+∞), v ∈ [
7

32
ν, ν]

}
,

gµ,ν0 = max

{
g(u(t), v(t))

µ+ ν

∣∣∣∣ t ∈ [0, 1], u ∈ [0,+∞), v ∈ [0, ν]

}
.

Remark 2.14. According to Lemma 2.6, assume that

ma =

(
4

∫ 1

0
M(s)a(s)ds

)−1

, Ma =

(
7

32

∫ q

p
M(s)a(s)ds

)−1

,

mb =

(
4

∫ 1

0
M(s)b(s)ds

)−1

, Mb =

(
7

32

∫ q

p
M(s)b(s)ds

)−1

.

(2.21)

3. Main Results

Lemma 3.1. Assume that conditions (H1)− (H3) and the conditions

fµ,ν
7
32

(µ,ν)
≥ 7

32
Ma , u ̸= T1(u, v), (u, v) ∈ ∂Ωµ,ν ,

gµ,ν7
32

(µ,ν)
≥ 7

32
Mb , v ̸= T2(u, v), (u, v) ∈ ∂Ωµ,ν

(3.1)
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hold. Then iK(T,Ωµ,ν) = 0.

Proof. Suppose that e(t) = (1, 1) for t ∈ [0, 1]. Thus e ∈ K. We claim that

(u, v) ̸= T (u, v) + θe, (u, v) ∈ ∂Ωµ,ν , θ > 0.

Otherwise, there exist a (u0, v0) ∈ ∂Ωµ,ν and θ > 0 such that u0 = T1(u0, v0)+θ
and v0 = T2(u0, v0)+θ. Using condition (3.1) and Lemma 2.12(c), we conclude
that for t ∈ [p, q],

u0(t) =

∫ 1

0
G(t, s) [a(s)f(v0(s), (u0 − w)(s)) + p1(s)] ds+ θ

≥
∫ q

p
G(t, s)a(s)f(v0(s), (u0 − w)(s))ds+ θ

≥ 7

32
(µ+ ν)Ma

(
7

32

∫ q

p
M(s)a(s)ds

)
+ θ >

7

32
(µ+ ν) + θ.

Similarly we can prove that v0(t) >
7
32(µ+ν)+θ. This implies that l(u0, v0) >

7
32(µ + ν), which is contradiction with Lemma 2.12(c). Hence from Theorem
2.11(ii), we deduce that iK(T,Ωµ,ν) = 0. �

Assume that the following condition holds:

(H4) ∫ 1

0
M(s)p1(s)ds ≤

µ+ ν

4
,

∫ 1

0
M(s)p2(s)ds ≤

µ+ ν

4
.

Lemma 3.2. Let conditions (H1)− (H4) and the following conditions hold.

fµ,ν
0 ≤ ma, u ̸= T1(u, v), (u, v) ∈ ∂Kµ,ν ,

gµ,ν0 ≤ mb, v ̸= T2(u, v), (u, v) ∈ ∂Kµ,ν .
(3.2)

Then iK(T,Kµ,ν) = 1.

Proof. Considering notation 2.13 and conditions (3.2), for (u, v) ∈ ∂Kµ,ν we
have

T1(u, v) =

∫ 1

0
G(t, s)[a(s)f(v(s), (u− w)(s)) + p1(s)]ds

≤
∫ 1

0
M(s)a(s)f(v(s), (u− w)(s))ds+

∫ 1

0
M(s)p1(s)ds

≤ µ+ ν

4
ma

(
4

∫ 1

0
M(s)a(s)ds

)
+

µ+ ν

4

=
µ+ ν

2
=

||(u, v)||
2

.
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This implies that ||T1(u, v)|| ≤ ||(u,v)||
2 . Similarly we can show that ||T2(u, v)|| ≤

||(u,v)||
2 . Thus ||T (u, v)|| ≤ ||(u, v)||. Applying Theorem 2.11(i), we conclude

that iK(T,Kµ,ν) = 1. �

Theorem 3.3. Assume that conditions (H1)− (H4) are satisfied also one of
the following conditions hold :

(C1) There exist µ1, µ2, µ3, ν1, ν2, ν3 ∈ (0,+∞) with (µ1, ν1) < 7
32(µ2, ν2)

and (µ2, ν2) < (µ3, ν3) such that

fµ1,ν1
0 ≤ ma, fµ2,ν2

7
32

(µ2,ν2)
≥ 7

32
Ma, u ̸= T1(u, v), (u, v) ∈ ∂Ωµ2,ν2 ,

fµ3,ν3
0 ≤ ma.

Also

gµ1,ν1
0 ≤ mb, gµ2,ν2

7
32

(µ2,ν2)
≥ 7

32
Mb, v ̸= T2(u, v), (u, v) ∈ ∂Ωµ2,ν2 ,

gµ3,ν3
0 ≤ mb.

(C2) There exist µ1, µ2, µ3, ν1, ν2, ν3 ∈ (0,+∞) with (µ1, ν1) < (µ2, ν2) <
7
32(µ3, ν3) such that

fµ1,ν1
7
32

(µ1,ν1)
≥ 7

32
Ma, fµ2,ν2

0 ≤ ma, u ̸= T1(u, v), (u, v) ∈ ∂Kµ2,ν2 ,

fµ3,ν3
7
32

(µ3,ν3)
≥ 7

32
Ma.

Also

gµ1,ν1
7
32

(µ1,ν1)
≥ 7

32
Mb, gµ2,ν2

0 ≤ mb, v ̸= T2(u, v), (u, v) ∈ ∂Kµ2,ν2 ,

gµ3,ν3
7
32

(µ3,ν3)
≥ 7

32
Mb.

Then the coupled system (1.1),(1.2) has two positive solutions in K.

Proof. Assume that condition (C2) holds. We prove that operator T has two
fixed points (u∗, v∗), (u

∗, v∗) in Kµ2,ν2\Ωµ1,ν1 and Ωµ3,ν3\Kµ2,ν2 . According to
Lemma 3.1 and Lemma 3.2, we have

iK(T,Kµ2,ν2) = 1 , iK(T,Ωµ1,ν1) = iK(T,Ωµ3,ν3) = 0.

Using Lemma 2.12(b), we conclude that Kµ1,ν1 ⊂ Kµ2,ν2 ⊂ Ωµ3,ν3 .

iK(T,Kµ2,ν2\Ωµ1,ν1) = iK(T,Kµ2,ν2)− iK(T,Ωµ1,ν1) = 1

iK(T,Ωµ3,ν3\Kµ2,ν2) = iK(T,Ωµ3,ν3)− iK(T,Kµ2,ν2) = −1.

Thus considering Theorem 2.11(iii), operator T has two fixed points (u∗, v∗)
and (u∗, v∗) in Kµ2,ν2\Ωµ1,ν1 and Ωµ3,ν3\Kµ2,ν2 . We can prove the same result,



CMDE Vol. 1, No. 1, 2013, pp. 39-54 51

when condition (C1) occurs. Using Remark 2.8, we deduce that coupled system
(1.1),(1.2) has two positive solutions in K. This completes the proof. �

Remark 3.4. If in (C2), f
µ1,ν1
7
32

(µ1,ν1)
≥ 7

32Ma is replaced by fµ1,ν1
7
32

(µ1,ν1)
> 7

32Ma and

gµ1,ν1
7
32

(µ1,ν1)
≥ 7

32Mb is replaced by gµ1,ν1
7
32

(µ1,ν1)
> 7

32Mb, then the coupled system

(1.1),(1.2) has a third solution (û, v̂) ∈ K. See more details in Theorem 2.11
[7].

Considering Theorem 3.3, we have the following lemma.

Lemma 3.5. Let the conditions (H1)− (H4) and one of the following condi-
tions hold :

(D1) There exist µ1, µ2, ν1, ν2 ∈ (0,+∞) with (µ1, ν1) <
7
32(µ2, ν2) such that

fµ1,ν1
0 ≤ ma, fµ2,ν2

7
32

(µ2,ν2)
≥ 7

32
Ma,

gµ1,ν1
0 ≤ mb, gµ2,ν2

7
32

(µ2,ν2)
≥ 7

32
Mb.

(D2) There exist µ1, µ2, ν1, ν2 ∈ (0,+∞) with (µ1, ν1) < (µ2, ν2) such that

fµ1,ν1
7
32

(µ1,ν1)
≥ 7

32
Ma, fµ2,ν2

0 ≤ ma,

gµ1,ν1
7
32

(µ1,ν1)
≥ 7

32
Mb, gµ2,ν2

0 ≤ mb.

Then the coupled system (1.1),(1.2) has one positive solution in K.

Remark 3.6. We can prove that if fµ,ν
7
32

(µ,ν)
> 7

32Ma, then u ̸= T1(u, v), (u, v) ∈
∂Ωµ,ν . Also if fµ,ν

0 < ma, then u ̸= T1(u, v), (u, v) ∈ ∂Kµ,ν . Similarly we
can derive this result for operator T2.(For more details see [7] pp. 694-695. )

4. Example

Consider the following fractional coupled system{
cD

11
4

0+
u(t) = a(t)f(v(t), u(t))− p1(t),

cD
9
4

0+
v(t) = b(t)g(u(t), v(t))− p2(t), t ∈ (0, 1)

(4.1)

with boundary conditions
u(0) = 0 = v(0)

u
′
(0) + u

′′
(0) = 0 = v

′
(0) + v

′′
(0)

u
′
(1) + u

′′
(1) = 0 = v

′
(1) + v

′′
(1)

(4.2)
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where

f(v, u) =


10−6 sin4(v) + u

1
3 , (u, v) ∈ [0, 103]× [0,+∞)

10−6 sin4(v) + u
1
3 + 105(u− 103), (u, v) ∈ [103, 105]× [0,+∞)

10−6 sin4(v) + u
1
3 + 9.9× 109, (u, v) ∈ [105,+∞)× [0,+∞)

and

g(u, v) =


10−8 cos2(u) + v

1
2 , (u, v) ∈ [0,+∞)× [0, 107]

10−8 cos2(u) + v
1
2 + 107(v − 107), (u, v) ∈ [0,+∞)× [107, 10

15
2 ]

10−8 cos2(u) + v
1
2 + (

√
10− 1)× 1014, (u, v) ∈ [0,+∞)× [10

15
2 ,+∞)

also

a(t) = 2Γ(
11

4
)(1− t)

1
4 , b(t) = 2Γ(

9

4
)(1− t)

1
2

p1(t) = (1− t)−
1
4 , p2(t) = (1− t)−

1
8 .

Choosing

µ1 = 10−10, µ2 = 102, µ3 = 107,

ν1 = 10−15, ν2 = 10, ν3 = 108,

simple calculation shows that condition (H4) holds as follow

∫ 1

0
M(s)p1(s)ds <

4

Γ(114 )
<

µ2 + ν2
4

,

∫ 1

0
M(s)p2(s)ds <

4

Γ(94)
<

µ2 + ν2
4

,

ma =
12

121
, Ma =

373248

66591
, mb =

231

1381
, Mb =

32× 106

3311119
.
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Now, with direct computation we have

f(v, u) ≥ 3

√
7

32
× 10−

10
3 >

7

32
(µ1 + ν1)Ma, u ∈ [

7

32
µ1, µ1], v ∈ [0, ν1].

So fµ1,ν1
7
32

(µ1,ν1)
>

7

32
Ma.

f(v, u) ≤ 10−6 + 10
2
3 ≤ (µ2 + ν2)ma, u ∈ [0, µ2], v ∈ [0, ν2].

So fµ2,ν2
0 ≤ ma.

f(v.u) ≥ 3

√
7

32
× 10

7
3 + 9.99× 109 >

7

32
(µ3 + ν3)Ma, u ∈ [

7

32
µ3, µ3],

v ∈ [0, ν3]. So fµ3,ν3
7
32

(µ3,ν3)
>

7

32
Ma,

g(u, v) ≥
√

7

32
× 10−

15
2 >

7

32
(µ1 + ν1)Mb, u ∈ [0, µ1], v ∈ [

7

32
ν1, ν1].

Hence gµ1,ν1
7
32

(µ1,ν1)
>

7

32
Mb.

g(u, v) ≤ 10−8 +
√
10 ≤ (µ2 + ν2)mb, u ∈ [0, µ2], v ∈ [0, ν2].

Hence gµ2,ν2
0 ≤ mb.

g(u, v) ≥
√

7

32
× 104 + (

√
10− 1)× 1014 >

7

32
(µ3 + ν3)Mb, u ∈ [0, µ3], v ∈ [

7

32
ν3, ν3].

Hence gµ3,ν3
7
32

(µ3,ν3)
>

7

32
Mb.

Using Theorem 3.3 and Remark 3.4 and Remark 3.6, we conclude that operator
T has three fixed points in K. Finally using Remark 2.8 we conclude that
coupled system (4.1),(4.2) has three positive solutions in K.

5. Conclusion

In this paper, the existence and multiplicity of positive solutions for coupled
system of nonlinear fractional BVPs with negatively perturbed terms, have
been studied. Employing fixed point technique, existence and multiplicity
results of positive solutions for BVP (2.9), implies the same results for BVP
(2.10).
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