تعداد نشریات | 44 |
تعداد شمارهها | 1,323 |
تعداد مقالات | 16,270 |
تعداد مشاهده مقاله | 52,954,432 |
تعداد دریافت فایل اصل مقاله | 15,625,017 |
Existence result for fuzzy form of the equation governing unsteady motion of solid particles in fluid medium | ||
Computational Methods for Differential Equations | ||
مقالات آماده انتشار، پذیرفته شده، انتشار آنلاین از تاریخ 22 دی 1403 اصل مقاله (334.23 K) | ||
نوع مقاله: Research Paper | ||
شناسه دیجیتال (DOI): 10.22034/cmde.2024.63793.2862 | ||
نویسندگان | ||
Masoumeh Zeinali* 1؛ Ghiyam Eslami2 | ||
1Faculty of Mathematics, Statistics and Computer sciences, University of Tabriz, Tabriz, Iran. | ||
2Department of Mechanical Engineering, Ahar branch, Islamic Azad University, Ahar, Iran. | ||
چکیده | ||
The unsteady drag force in the equation governing the dynamics of small solid particles in the fluid medium appears as an integral Volterra operator in the equation, which is known as the history force. The history force has a kernel whose exact and general form is not known to date. In this article, the very general form of this equation is considered so that both the kernel of the history force and the fields affecting the particle motion can have a general linear or non-linear form. In the present work, the fuzzy form of this equation is proposed as a new method for uncertainty analysis of the problem. Using Shoulder's fixed point theorem in the semi-linear Banach space, it is proved that the fuzzy form of this equation has a solution. | ||
کلیدواژهها | ||
Implicit ingegro-differential equation؛ GH-differentiability؛ particle motion؛ Schauder fixed point theorem | ||
آمار تعداد مشاهده مقاله: 30 تعداد دریافت فایل اصل مقاله: 33 |