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Abstract
The unsteady drag force in the equation governing the dynamics of small solid particles in the fluid medium

appears as an integral Volterra operator in the equation, which is known as the history force. The history force

has a kernel whose exact and general form is not known to date. In this article, the very general form of this
equation is considered so that both the kernel of the history force and the fields affecting the particle motion can

have a general linear or non-linear form. In the present work, the fuzzy form of this equation is proposed as a new
method for uncertainty analysis of the problem. Using Shoulder’s fixed point theorem in the semi-linear Banach

space, it is proved that the fuzzy form of this equation has a solution.
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1. Introduction

The study of unsteady motion of solid particles in a fluid medium has been a subject of significant research
[9, 14, 17] due to its extensive applications in various scientific and engineering fields, including sediment transport
[18], dispersion of pollutants [19], heat transfer enhancement [13] and industrial processes [10, 11]. Traditional models
often employ deterministic approaches to describe the dynamics of particle-fluid interactions. However, real-world
scenarios are frequently characterized by inherent uncertainties and imprecisions, which can arise from measurement
errors, variations in material properties, or simplified modeling assumptions [12, 20]. To address these uncertainties,
fuzzy logic and fuzzy differential equations offer a powerful framework [21, 24, 25]. By incorporating fuzzy set theory,
one can develop models that better capture the vagueness inherent in physical systems.

The fuzzy differential equation under consideration extends the classical formulation by integrating fuzzy parameters
and initial conditions, thereby providing a more realistic representation of the system. We will employ advanced
mathematical techniques and theorems to establish the existence of solutions for this fuzzy differential equation. Such
existence results are crucial as they lay the foundational groundwork for further qualitative analyses and numerical
simulations. Our study contributes to the broader field of fluid-particle dynamics by drawing on the theory of fuzzy
mathematics. It not only enhances the theoretical understanding of the unsteady motion of particles in fluids, but
also provides practical insights for engineers and scientists dealing with complex and uncertain systems.

Here, we provide a comprehensive overview of recent developments in the study of linear and nonlinear fuzzy
integro-differential equations. There’s a growing interest in both theoretical and numerical aspects of these equations,
particularly in using fuzzy quadrature rules and power series methods for numerical solutions [2, 3]. Several studies
have established existence and uniqueness results using the various fixed point theorems [5, 6, 23], with recent works
extending these results to semilinear cases [21] and generalized differentiability of fuzzy functions [4]. The classical
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Banach fixed point theorem has been a primary tool, and more recent work has generalized the Schauder fixed point
theorem in semilinear Banach space [1], offering weaker conditions.

Implicit fuzzy integro-differential equations are the main topic of this work since they are applicable to a wide range
of engineering applications, including fluid mechanics and particle motion in viscous media. Although these equations
have many applications, the existence of their solution especially in the fuzzy state has not been thoroughly studied.
By taking into account the kind of GH-differentiabilty of the first and second order derivative of the equation’s solution,
an equivalency lemma that corresponds the integro-differential equation to four nonlinear integral equations has been
proven in reference [22]. In this article, the integro-differential equation is first transformed into the appropriate integral
equation using this equivalency lemma. Next, the existence of the solution to the related integral is established using
the semilinear Banach spaces Schauder fixed point theorem.

Implicit fuzzy integro-differential equations are the main topic of this work since they are applicable to a wide range
of engineering applications, including fluid mechanics and particle motion in viscous media. Although these equations
have many applications, the existence of their solutionespecially in the fuzzy statehas not been thoroughly studied. By
taking into account the kind of GH-differentiabilty of the first and second order derivative of the equation’s solution,
an equivalency lemma that corresponds the integro-differential equation to four nonlinear integral equations has been
proven in reference [22]. In this article, the integro-differential equation is first transformed into the appropriate integral
equation using this equivalency lemma. Next, the existence of the solution to the related integral is established using
the semilinear Banach spaces Schauder fixed point theorem.

2. Preliminaries

In this study, the symbols RF and Ãα = [aα−, a
α
+], respectively, will be used to depict the set of all fuzzy numbers

and the so-called α-cut of fuzzy numbers.

Theorem 2.1. ([15]) Let A be a fuzzy number and Ãα = [aα−, a
α
+] be its α-cuts. Then, the endpoints of the α-cuts are

defined by the functions a−, a+ : [0, 1]→ R, which fulfill the following requirements:

(i) a−(α) = aα− ∈ R, is a bounded, non-decreasing, left-continuous function in (0, 1] and it is right-continuous at
0.

(ii) a+(α) = aα+ ∈ R, is a bounded, non-increasing, left-continuous function in (0, 1] and it is right-continuous at
0.

(iii) a1
− ≤ a1

+.

On the other hand, there exists a unique fuzzy number A with aα−, a
α
+ as the endpoints of its α-cuts if the functions

a−, a+ : [0, 1]→ R meet the requirements (i)-(iii).

Definition 2.2. (See [7].) Assume that λ ∈ R and Ã, B̃ ∈ RF . Level-wise definitions of the sum, H-difference, and
scalar product are as follows:

(Ã+ B̃)α = Ãα + B̃α,

(Ã	 B̃)α = [aα− − bα−, aα+ − bα+],

(λ.Ã)α = λÃα.

The space RF is equipped with the metric

D(Ã, B̃) = sup
α∈[0,1]

max{|aα− − bα−|, |aα+ − bα+|},

where [Ã]α = [aα−, a
α
+] and [B̃]α = [bα−, b

α
+] are α-cuts of A,B ∈ RF . The space RF with this metric is a complete

metric space and

(i) D(Ã+ B̃, Ã+ C̃) = D(B̃, C̃),

(ii) description D(λ.Ã, λ.B̃) = |λ|D(Ã, B̃),

(iii) D(Ã+ B̃, C̃ + Ẽ) ≤ D(Ã, C̃) +D(B̃, Ẽ).
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The space RcF is defined as follows:

RcF =

{
A ∈ RF |α→ [u]αis continuous

}
.

Definition 2.3. Let B ⊆ RcF . If there exists M ⊆ R such that for all x ∈ B, we have [x]0 ⊆ M , then it is called
compact supported.

Definition 2.4. Let B ⊆ RcF , α0 ∈ [0, 1] and

dH([x]α, [x]α0) = max{|xα− − x
α0
− |, |xα+ − x

α0
+ |},

be the Hausdorff distance. If

∀ε > 0, ∃δ > 0 s.t |α− α0| < δ ⇒ dH([x]α, [x]α0) < ε, ∀x ∈ B,
then B is called level-equicontinuous at α0.

Theorem 2.5. ([1]) Assume that B is a subset of RcF that has compact support. Then B is level-equicontinuous on
[0, 1] if and only if it is a relatively compact subset of (RcF , D).

Definition 2.6. ([1]) The term “semilinear metric space” refers to a semilinear space M that has a metric d : M×M →
R+ if

• d(kA, kB) = kd(A,B) for any A,B ∈ S and k ≥ 0 (positive homogeneity),
• d(A+B,C +B) = d(A,C) for any A,B,C ∈M (translation invariance).

The definition of a norm in this space is ‖x‖ = d(x, 0). If B is both a complete metric space and a semiliniear space
at the same time, it is referred to be a semilinear Banach space. Consequently, since the set of real fuzzy numbers
is both semilinear and complete metric space, even though it is not a Banach space, it can be a semiliniear Banach
space.

Theorem 2.7. ([1]) Assume that T : S → S is a compact operator and that S is a nonempty, closed, bounded, and
convex subset of a semilinear Banach space B with the cancelation property. Then T has at least one fixed point in S.

Remark 2.8. Theorem 2.7 may be applied to RcF since it is a semilinear Banach space with the cancelation property.

3. Maxey-Riley equation of particle motion

The most advanced and complete equation known to date for prediction of small solid particles dynamics in the
fluid medium is Maxey-Riley equation. This equation is a balance between different forces acting on the particle
including buoyancy force, the force caused by stress gradient of the fluid, the virtual mass force, Steady Stokes drag
and the unsteady Basset force. It is

mp
dvp
dt

= (mp − ρfVp)g + ρfVp
Dvf
Dt
− kρfVp

d

dt
(vp − vf −

1

10
a2∇2vf )

− 6πµa(vp − vf −
1

6
a2∇2vf )− 6πµa2

∫ t

0

d
dτ (vp(τ)− vf (τ)− 1

6a
2∇2vf )√

πν(t− τ)
dτ, (3.1)

where, the subscripts p and f stand for the particle and fluid, respectively. vp = vp(t) is the Lagrangian velocity of the
particle, vf = vf (r, t) is an arbitrary Eulerian velocity of the fluid flow at the particle location. m is mass, ρ is mass
density, a is the particle radius and µ is the fluid dynamic viscosity. In the case of having any other force originating
from agents such as electric fields, the corresponding force should be added to the equation.

Maxey-Riley equation can predict time evolution of the particle trajectory and velocity inside an arbitrary moving
fluid provided that the particle Reynolds number remains smaller than unity (Re << 1). For fairly larger Reynolds
number, it is essential to modify the last term in the right hand side of the equation, known as the history force.
Generally the history force is

Fh = 6πµa2

∫ t

0

K(t− τ)
dvp(τ)

dτ
dτ , (3.2)
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where, K(t−τ) denotes the history force kernel. No general form is found for this kernel up to now. The basset kernel
[14, 16]

KBasset(t− τ) =

[
4πν(t− τ)

d2
p

]−1/2

,

and Mei and Adrian kernel [16]

K(t− τ) =

([
4πν(t− τ)

d2
p

]1/2c1

+

[
π(t− τ)2

fHτd
Re3

p

]1/c1
)−c1

, (3.3)

are two common ones used for Re << 1 and Re < 170, respectively (for details see ref. [16]). Mathematically speaking,
Eq. (3.1) with a general form of the history force, Eq. (3.2) reduces to

x′′(t) = f(t, x(t), x′(t)) +

∫ t

0

k(t, τ, x(τ), x′(τ), x′′(τ))dτ.

Because in practice the values related to the properties of the fluid and the immersed particle are determined exper-
imentally and are uncertain, the dynamic behavior of the particle will also be uncertain. To predict the effect of the
uncertainty related to the parameters involved in the problem on the dynamics of the particle, these parameters and
the initial conditions of the particle can be considered as fuzzy numbers. In this case, we are faced with the fuzzy
form of the governing equation. In the first step, it should be checked whether the fuzzy form of this equation has a
solution in principle or not. This work is dedicated to study the fuzzy form of this equation as described in the next
section.

4. Problem description

In the above-discussed subject of particle dynamics in fluid media, we want to demonstrate the existence of an
implicit form of the fuzzy integro-differential equation, Eq. (4.1), with fuzzy initial conditions (4.2) and (4.3):

x′′(t) = f(t, x(t), x′(t)) +

∫ t

0

k(t, τ, x(τ), x′(τ), x′′(τ))dτ, t ∈ I = [0, b], (4.1)

x(0) = x0 (4.2)

x′(0) = v0 (4.3)

in which f ∈ C([0, b]× RcF × RcF ,RcF ), k ∈ C(G× RcF × RcF × RcF ,RcF ), x0, v0 ∈ RcF and

G =

{
(t, s)|t ∈ [0, b], s ∈ [0, t]

}
.

Let us represent the space of fuzzy functions with continuous second derivative (in the sense of GH-derivative) as
C2([0, b],RF ). The fuzzy initial value problem (4.1)-(4.3) shall be referred to as FIVP in the rest of this work.
Depending on the kind of GH-differentiability for x and x′, we present four distinct forms of the FIVP solution in the
following definition.

Definition 4.1. A fuzzy function x ∈ C2([0, b],RcF ) that satisfies the Equations (4.1)-(4.3) is a solution for the FIVP.
Regarding the distinct type of GH-differentiability, the following solutions can be taken into consideration for FIVP
(4.1)-(4.3):

• (i)-(i)-solution: For a solution x ∈ C2([0, b],RcF ), if x and x′ are (i)-GH-differentiable, then x is referred to as
a (i)-(i)-solution.

• (i)-(ii)-solution: For a solution x ∈ C2([0, b],RcF ), if x is (i)-GH-differentiable and x′ is (ii)-GH-differentiable,
then x is referred to as a (i)-(ii)-solution.

• (ii)-(i)-solution: For a solution x ∈ C2([0, b],RcF ), if x is (ii)-GH-differentiable and x′ is (i)-GH-differentiable,
then x is referred to as a (ii)-(i)-solution.
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• (ii)-(ii)-solution: For a solution x ∈ C2([0, b],RcF ), if x and x′ are (ii)-GH-differentiable, then x is referred to
as a (ii)-(ii)-solution.

In the next lemma, FIVP is reduced to an equivalent integral equation (EIE). Therefore, it is possible to analyze
the existence and uniqueness of the corresponding integral equation rather than the existence and uniqueness of the
solution of the problem understudy.

Lemma 4.2. (Equivalence Lemma [22]) The equivalent integral equation to FIVP is

(a)

y(t) = f

[
t, x0 + v0t+

∫ t

0

(t− s)y(s)ds, v0 +

∫ t

0

y(s)ds

]
+

∫ t

0

k

[
t, τ, x0 + v0τ +

∫ τ

0

(τ − s)y(s)ds, v0 +

∫ τ

0

y(s)ds, y(τ)

]
dτ, (4.4)

if FIVP has (i)-(i)-solution x. The following is relationship between the solutions of FIVP and the equivalent
integral equation

x(t) = x0 + v0t+

∫ t

0

(t− s)y(s)ds.

(b)

y(t) = f

[
t, x0 + v0t	 (−1)

∫ t

0

(t− s)y(s)ds, v0 	 (−1)

∫ t

0

y(s)ds

]
+

∫ t

0

k

[
t, τ, x0 + v0τ 	 (−1)

∫ τ

0

(τ − s)y(s)ds, v0 	 (−1)

∫ τ

0

y(s)ds, y(τ)

]
dτ, (4.5)

if FIVP has (i)-(ii)-solution x. The following is relationship between the solutions of FIVP and the equivalent
integral equation

x(t) = x0 + v0t	 (−1)

∫ t

0

(t− s)y(s)ds.

(c)

y(t) = f

[
t, x0 	 (−1)v0t	 (−1)

∫ t

0

(t− s)y(s)ds, v0 +

∫ t

0

y(s)ds

]
+

∫ t

0

k

[
t, τ, x0 	 (−1)v0τ 	 (−1)

∫ τ

0

(τ − s)y(s)ds, v0 +

∫ τ

0

y(s)ds, y(τ)

]
dτ, (4.6)

if FIVP has (ii)-(i)-solution x. The following is relationship between the solutions of FIVP and the equivalent
integral equation

x(t) = x0 	 (−1)v0t	 (−1)

∫ t

0

(t− s)y(s)ds.

(d)

y(t) = f

[
t, x0 	 (−1)v0t+

∫ t

0

(t− s)y(s)ds, v0 	 (−1)

∫ t

0

y(s)ds

]
+

∫ t

0

k

[
t, τ, x0 	 (−1)v0τ +

∫ t

0

(t− s)y(s)ds], v0 	 (−1)

∫ t

0

y(s)ds, y(τ)

]
dτ, (4.7)

if FIVP has (ii)-(ii)-solution x. The following is relationship between the solutions of FIVP and the equivalent
integral equation

x(t) = x0 	 (−1)v0t+

∫ t

0

(t− s)y(s)ds.
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Using the equivalence lemma, FIVP has a unique solution if and only if the equivalent fuzzy integral equation
(FIE) has unique continuous solution. In the following theorem, we use the Schauder fixed point theorem in semilinear
Banach spaces (introduced in section 2), to show the existence of the solution for the pertaining FIEs; Equations
(4.4)-(4.7).

Theorem 4.3. Suppose that
(i) k ∈ C(G× RcF × RcF × RcF ,RcF ) which yields

∃Mk > 0; ‖k‖ ≤Mk,

(ii) f ∈ C([0, b]× RcF × RcF ,RcF ) which yields

∃Mf > 0; ‖f‖ ≤Mf ,

(iii) Mf + bMk ≤ R,
(iv) The functions f and k are compact,
(v) The functions v−0 and v+

0 (defined as in Theorem 2.1) are strictly increasing differentiable and strictly decreasing
differentiable on [0, 1], respectively. There exist the constants c1, c1 > 0, c2, c2 < 0, such that

0 < c1 < ([v0]α−)′ < c1, c2 < ([v0]α+)′ < c2 < 0,

for all α ∈ [0, 1] and len[v0]1 = 0,
(vi) The functions x−0 and x+

0 are strictly increasing differentiable and strictly decreasing differentiable on [0, 1],

respectively and there exist the constants d1, d1 > 0, d2, d2 < 0 such that

0 < d1 < ([x0]α−)′ < d1, d2 < ([x0]α+)′ < d2 < 0,

for all α ∈ [0, 1] and len[x0]1 = 0.
Then,

A. Assuming (i)-(iv), there exists a continuous global solution for FIE (4.4).
B. Assuming (i)-(v), there exists a continuous global solution for FIE (4.5).
C. Assuming (i)-(vi), there exists a continuous global solution for FIE (4.6).
D. Assuming (i)-(v), there exists a continuous global solution for FIE (4.7).

Proof. Case A. Consider the operator T : Λ→ Λ defined as

Ty(t) = f

[
t, x0 + v0t+

∫ t

0

(t− s)y(s)ds, v0 +

∫ t

0

y(s)ds

]
+

∫ t

0

k

[
t, τ, x0 + v0τ +

∫ τ

0

(τ − s)y(s)ds, v0 +

∫ τ

0

y(s)ds, y(τ)

]
dτ,

where

Λ :=

{
y ∈ C([0, b],RcF ); d(y, 0̂) ≤ R

}
.

Obviously, the fixed point of the operator T is the solution of the Eq. (4.4). So, to establish the existence of the
solution of Eq. (4.4), it is sufficient to prove the operator T has a fixed point.
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First of all, we have to prove T maps Λ to itself. To do this, let y ∈ Λ and t1, t2 ∈ [0, b] (t1 < t2)

D(Ty(t1), Ty(t2)) ≤ D
(
f

[
t1, x0 + v0t1 +

∫ t1

0

(t1 − s)y(s)ds, v0 +

∫ t1

0

y(s)ds

]
f

[
t2, x0 + v0t2 +

∫ t2

0

(t2 − s)y(s)ds, v0 +

∫ t2

0

y(s)ds

])
+

∫ t1

0

D

(
k

[
t1, τ, x0 + v0τ +

∫ τ

0

(τ − s)y(s)ds, v0 +

∫ τ

0

y(s)ds, y(τ)

]
k

[
t2, τ, x0 + v0τ +

∫ τ

0

(τ − s)y(s)ds, v0 +

∫ τ

0

y(s)ds, y(τ)

])
dτ

+

∫ t2

t1

D

(
0̂, k

[
t2, τ, x0 + v0τ +

∫ τ

0

(τ − s)y(s)ds, v0 +

∫ τ

0

y(s)ds, y(τ)

])
dτ.

Taking into account the continuity of f and k, we can conclude that D(Ty(t1), Ty(t2)) → 0 when t1 → t2. Thus

Ty ∈ C([0, b],RcF ) and to prove that Ty ∈ Λ, it is sufficient to show d(Ty, 0̂) ≤ R. By conditions (i), (ii) and (iii), we
obtain

D(Ty(t), 0̂) ≤ D
(
f

[
t, x0 + v0t+

∫ t

0

(t− s)y(s)ds, v0 +

∫ t

0

y(s)ds

]
, 0̂

)
+

∫ t

0

D

(
k

[
t, τ, x0 + v0τ +

∫ τ

0

(τ − s)y(s)ds, v0 +

∫ τ

0

y(s)ds, y(τ)

]
, 0̂

)
dτ

≤Mf +

∫ t

0

Mkdτ ≤Mf + bMk ≤ R.

and so
d(Ty, 0̂) = sup

t∈[0,b]

D(Ty(t), 0̂) ≤ R.

Therefore, T maps Λ to itself. We now show the compactness of T . As per the compact operator definition, we need
to demonstrate that T (Λ) is relatively compact. The Arzela-Ascoli theorem can be used to demonstrate
(i) T (Λ) is an equicontinuous subset of C([0, b],RcF );
(ii) T (Λ)(t) is relatively compact in RcF for each t ∈ [0, b].
For the case (i), let y ∈ Λ and ε is given. Using the continuity of f , there is some δ1 > 0 such that for (t1, ν1, ω1), (t2, ν2, ω2) ∈
[0, b]× RcF × RcF

max{|t1 − t2|, D(ν1, ν2), D(ω1, ω2)} ≤ δ1 → D

(
f(t1, ν1, ω1), f(t2, ν2, ω2)

)
≤ ε

3
. (4.8)

By a simple calculation, it can be proved if |t1 − t2| ≤ δ1/R, then

D

(
v0 +

∫ t1

0

y(s)ds, v0 +

∫ t2

0

y(s)ds

)
≤ δ1 (4.9)

and if |t1 − t2| ≤ δ1
‖v0‖+2bR , then

D

(
x0 + v0t1 +

∫ t1

0

(t1 − s)y(s)ds, x0 + v0t2 +

∫ t2

0

(t2 − s)y(s)ds

)
≤ δ1. (4.10)

By combining (4.8), (4.9), and (4.10), if |t1 − t2| ≤ δ2 in which δ2 = min{δ1, δ1/R, δ1
‖v0‖+2bR} then

D

[
f [t1, x0 + v0t1 +

∫ t1

0

(t1 − s)y(s)ds, v0 +

∫ t1

0

y(s)ds],

f([t2, x0 + v0t2 +

∫ t2

0

(t2 − s)y(s)ds, v0 +

∫ t2

0

y(s)ds]

)
≤ ε

3
. (4.11)
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On the other hand, since k is continuous, there exists some δ3 > 0 such that |t1 − t2| ≤ δ3 implies

D

(
k[t1, τ, x0 + v0τ +

∫ τ

0

(τ − s)y(s)ds, v0 +

∫ τ

0

y(s)ds, y(τ)],

k[t2, τ, x0 + v0τ +

∫ τ

0

(τ − s)y(s)ds, v0 +

∫ τ

0

y(s)ds, y(τ)]

)
≤ ε

3b
. (4.12)

Let δ = min{δ2, δ3, ε
3Mk
}, |t1 − t2| ≤ δ and t2 > t1. Then (4.11) and (4.12) yields

D(Ty(t1), Ty(t2)) ≤ ε,

which means T (Λ) is equicontinuous. Now, for the case (ii), based on Theorem 2.5, it is enough to prove T (Λ)(t) is
level-equicontinuous and compact supported. Define the sets Λ1 and Λ2 as

Λ1 : =

{
w ∈ C1([0, b],RcF ) | w(t) = v0 +

∫ t

0

y(s)ds & y ∈ Λ

}
, (4.13)

Λ2 : =

{
w ∈ C2([0, b],RcF ) | w(t) = x0 + v0t+

∫ t

0

(t− s)y(s)ds & y ∈ Λ

}
, (4.14)

Clearly Λ1 and Λ2 are bounded.
Using the compactness of f , it can be concluded that f([0, b],Λ2,Λ1) is relatively compact. As a result, it is level-

equicontinuous according to Theorem 2.5. Similarly, one can concluded that k(G,Λ2,Λ1,Λ) is level-equicontinuous.
Thus, for a given ε > 0 there exists δ > 0 such that if |α− β| < δ, then

dH

(
[f(t, x0 + v0t+

∫ t

0

(t− s)y(s)ds, v0 +

∫ t

0

y(s)ds)]α

[f(t, x0 + v0t+

∫ t

0

(t− s)y(s)ds, v0 +

∫ t

0

y(s)ds)]β
)
≤ ε

2
, ∀t ∈ [0, b], y ∈ Λ,

dH

(
[k(t, τ, x0 + v0t+

∫ t

0

(t− s)y(s)ds, v0 +

∫ t

0

y(s)ds, y(τ))]α

[k(t, τ, x0 + v0t+

∫ t

0

(t− s)y(s)ds, v0 +

∫ t

0

y(s)ds, y(τ))]β
)
≤ ε

2b
, ∀(t, τ) ∈ G, y ∈ Λ.

Hence, direct calculation implies

dH

(
[T (Λ)(t)]α, [T (Λ)(t)]β

)
≤ ε.

Therefor, T (Λ)(t) is level-equicontinuous in RcF . Finally, we have to prove T (Λ)(t) is compact-supported. Let y ∈ Λ

[T (y)(t)]0 = f

(
t, [x0]0 + t[v0]0 +

∫ t

0

(t− s)[y(s)]0ds, [v0]0 +

∫ t

0

[y(s)]0ds

)
+

∫ t

0

k

(
t, τ, [x0]0 + τ [v0]0 +

∫ τ

0

(τ − s)[y(s)]0ds, [v0]0 +

∫ τ

0

[y(s)]0ds, [y(τ)]0
)
dτ

⊆ f([0, b],Λ2,Λ1) +

∫ t

0

k(G,Λ2,Λ1,Λ)dτ.

Since f and k are compact, f([0, b],Λ2,Λ1) and k(G,Λ2,Λ1,Λ) will be relatively compact and consequently, there exist
compact sets k1 an k2 such that f([0, b],Λ2,Λ1) ⊆ k1 and k(G,Λ2,Λ1,Λ) ⊆ k2. Hence T (Λ)(t) is compact supported.
Now, Theorem 2.7 shows that the Equation (4.4) has at least one solution y.
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For the cases B-D the proving procedure is very similar to the case A, i.e. we consider operators TB , TC , TD : Λ′ →
Λ′ defined by

TB(y) = f

[
t, x0 + v0t	 (−1)

∫ t

0

(t− s)y(s)ds, v0 	 (−1)

∫ t

0

y(s)ds

]
+

∫ t

0

k

[
t, τ, x0 + v0τ 	 (−1)

∫ τ

0

(τ − s)y(s)ds, v0 	 (−1)

∫ τ

0

y(s)ds, y(τ)

]
dτ,

TC(y) = f

[
t, x0 	 (−1)v0t	 (−1)

∫ t

0

(t− s)y(s)ds, v0 +

∫ t

0

y(s)ds

]
+

∫ t

0

k

[
t, τ, x0 	 (−1)v0τ 	 (−1)

∫ τ

0

(τ − s)y(s)ds, v0 +

∫ τ

0

y(s)ds, y(τ)

]
dτ,

TD(y) = f

[
t, x0 	 (−1)v0t+

∫ t

0

(t− s)y(s)ds, v0 	 (−1)

∫ t

0

y(s)ds

]
+

∫ t

0

k

[
t, τ, x0 	 (−1)v0τ +

∫ t

0

(t− s)y(s)ds], v0 	 (−1)

∫ t

0

y(s)ds, y(τ)

]
dτ,

for the case B, C and D respectively where

Λ′ :=

{
y ∈ C([0, b],RcF ); d(y, 0̂) ≤ R & |

∂yα−(t)

∂α
|, |
∂yα+(t)

∂α
| ≤M ∀t ∈ [0, b],∀α ∈ [0, 1] & len([y]1) = 0

}
.

The big challenge of these cases is the existences of H-differences appeared in the above operators. The remaining part
of the proof is very similar to the case A. So, what we are about to show is the existence of the H-differences involved
in the operators TB , TC and TD. In general, for u, v ∈ RF the H-difference u	v exists if and only if [uα−−vα−, uα+−vα+]
defines the α-cuts of a fuzzy number (see [8]). According to Theorem 2.1, we define the operators w−, w+ : [0, 1]→ R
as

w−(α) = uα− − vα−,
w+(α) = uα+ − vα+.

It is sufficient to prove that the conditions (i)-(iii) of theorem 2.1 hold true for w− and w+. Since u and v are fuzzy
numbers, the continuity conditions clearly hold true. So, we have to prove w− is nondecreasing, w+ is nonincreasing
and w−(1) ≤ w+(1). Bellow, we prove the existence of the H-differences for the cases B-D separately.

Case B. In definition of the operator TB the following H-differences appeared

v0t	 (−1)

∫ t

0

(t− s)y(s)ds, (4.15)

v0 	 (−1)

∫ t

0

y(s)ds. (4.16)

The existence of H-difference (4.16) can be concluded from [8] Lemma 2.2. In order to prove the existence of (4.15),
we have to prove

[v0t]
α
− − [(−1)

∫ t

0

(t− s)y(s)ds]α− is nondecreasing,

[v0t]
α
+ − [(−1)

∫ t

0

(t− s)y(s)ds]α+ is nonincreasing,

[v0t]
1
− − [(−1)

∫ t

0

(t− s)y(s)ds]1− ≤ [v0t]
1
+ − [(−1)

∫ t

0

(t− s)y(s)ds]1+,
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or equivalently

t[v0]α− +

∫ t

0

(t− s)yα+(s)ds is nondecreasing, (4.17)

t[v0]α+ +

∫ t

0

(t− s)yα−(s)ds is nonincreasing, (4.18)∫ t

0

t− s
t

len([y(s)]1)ds ≤ len([v0]1). (4.19)

Obviously (4.19) holds true because len([v0]1) = 0 and len([y(s)]1) = 0, for all s ∈ [0, b]. To prove (4.17) and (4.18) it
is sufficient to show

t([v0]α−)′ +

∫ t

0

(t− s)
∂yα+(s)

∂α
ds > 0,

t([v0]α+)′ +

∫ t

0

(t− s)
∂yα−(s)

∂α
ds < 0.

Since ([v0]α−)′ > c1 and
∂yα+(s)

∂α ≥ −M , we have

t([v0]α−)′ +

∫ t

0

(t− s)
∂yα+(s)

∂α
ds > tc1 −

Mt2

2
= t(c1 −

Mt

2
) ≥ 0,

for all t ∈ [0, 2
c1
M ] which implies (4.17).

Since ([v0]α+)′ < c2 and
∂yα+(s)

∂α ≤M , we have

t([v0]α+)′ +

∫ t

0

(t− s)
∂yα−(s)

∂α
ds < tc2 +

Mt2

2
= t(c2 +

Mt

2
) ≤ 0,

for all t ∈ [0,−2 c2M ] which implies (4.18).

Finally, the H-difference (4.15) exists, for all t ∈ [0, h], where h = min{2 c1M ,−2 c2M }.
Case C. In definition of TC , the only H-difference is

x0 	 (−1)v0t	 (−1)

∫ t

0

(t− s)y(s)ds. (4.20)

In a similar way of the case B, in order to prove the existence of this H-difference, we have to prove

[x0]α− + t[v0]α+ +

∫ t

0

(t− s)[y(s)]α+ds is nondecreasing,

[x0]α+ + t[v0]α− +

∫ t

0

(t− s)[y(s)]α−ds is nonincreasing,

[x0]1− + t[v0]1+ +

∫ t

0

(t− s)[y(s)]1+ds ≤ [x0]1+ + t[v0]1− +

∫ t

0

(t− s)[y(s)]1−ds,

or equivalently

([x0]α−)′ + t([v0]α+)′ +

∫ t

0

(t− s)
∂[y(s)]α+
∂α

ds > 0, (4.21)

([x0]α+)′ + t([v0]α−)′ +

∫ t

0

(t− s)
∂[y(s)]α−
∂α

ds < 0, (4.22)

len([v0]1)t+

∫ t

0

(t− s)len([y(s)]1)ds ≤ len([x0]1). (4.23)
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Obviously (4.23) holds true because len([v0]1) = 0, len([x0]1) = 0 and len([y(s)]1) = 0 for all s ∈ [0, b]. Since

([x0]α−)′ > d1, ([v0]α+)′ > c2,
∂[y(s)]α+
∂α

≥ −M,

([x0]α+)′ < d2, ([v0]α−)′ < c1,
∂[y(s)]α−
∂α

≤M,

hence

([x0]α−)′ + t([v0]α+)′ +

∫ t

0

(t− s)
∂[y(s)]α+
∂α

ds > d1 + tc2 −M
t2

2
, (4.24)

([x0]α+)′ + t([v0]α−)′ +

∫ t

0

(t− s)
∂[y(s)]α−
∂α

ds < d2 + tc1 +M
t2

2
. (4.25)

By elementary calculus, it can be easily verified that for t ∈
[
0,

c2+
√
c22+4Md1

M

]
, we have

d1 + tc2 −M
t2

2
> 0,

and for t ∈
[
0,
−c1+
√
c12−2Md2
M

]
, we have

d2 + tc1 +M
t2

2
< 0.

So for t ∈ [0, h], where h = min{ c2+
√
c22+4Md1

M ,
−c1+
√
c12−2Md2
M }, the following inequalities hold true:

d1 + tc2 −M
t2

2
> 0, d2 + tc1 +M

t2

2
< 0.

These along with the inequalities (4.24) and (4.25) imply (4.21) and (4.22). Accordingly, for t ∈ [0, h] the H-difference
(4.20) exists.
Case D. In definition of TD the following H-differences appeared

x0 	 (−1)v0t, v0 	 (−1)

∫ t

0

y(s)ds.

The existence of second H-differences can be concluded from [8] Lemma 2.2. In order to prove the existence of
x0 	 (−1)v0t in a similar reasoning of previous cases it is enough to prove

([x0]α−)′ + ([v0]α+)′t > 0, (4.26)

([x0]α+)′ + ([v0]α−)′t < 0, (4.27)

[x0]1− + [v0]1+t ≤ [x0]1+ + [v0]1−t. (4.28)

Obviously, (4.28) holds true because len([x0]1) = 0 and len([v0]1) = 0. Since

([x0]α−)′ > d1, ([v0]α+)′ > c2,

([x0]α+)′ < d2, ([v0]α−)′ < c1,

we have

([x0]α−)′ + ([v0]α+)′t > d1 + tc2 > 0, (4.29)

([x0]α+)′ + ([v0]α−)′t < d2 + tc1 < 0, (4.30)

for any t ∈ [0, h], where h = min{−d1c2 ,−
d2
c1
}. Therefore, for any t ∈ [0, h] H-difference x0 	 (−1)v0t exists. �
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Conclusion

The fuzzy form of the equation governing the accelerated motion of particles in a fluid medium was investigated
by including the force related to unsteady drag (the history force) with an arbitrary kernel. Using the Schauder fixed
point theorem in semilinear Banach spaces, it was proved that under certain conditions the aforementioned equation
has a solution. Due to the arbitrary nature of the history force kernel, there is no Stokes flow limitation in this
problem.
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