تعداد نشریات | 44 |
تعداد شمارهها | 1,303 |
تعداد مقالات | 16,022 |
تعداد مشاهده مقاله | 52,493,429 |
تعداد دریافت فایل اصل مقاله | 15,219,731 |
New study to construct new solitary wave solutions for generalized sinh- Gordon equation | ||
Computational Methods for Differential Equations | ||
مقاله 3، دوره 2، شماره 2، تیر 2014، صفحه 77-82 اصل مقاله (111.57 K) | ||
نوع مقاله: Research Paper | ||
نویسندگان | ||
Ahmad Neirameh؛ Saeed Shokooh* | ||
Gonbad Kavous University | ||
چکیده | ||
In this work, we successfully construct the new exact traveling wave solutions of the generalized Sinh–Gordon equation by new application of the homogeneous balance method. The idea introduced in this paper can be applied to other nonlinear evolution equations. | ||
کلیدواژهها | ||
Solitary wave solution؛ Homogeneous balance method؛ generalized sine-Gordon equation | ||
مراجع | ||
[1] SA, El-Wakil, Abdou MA, New exact travelling wave solutions using modified extended tanhfunction method. Chaos Solitons Fractals 2007; 31; 840-52. [2] E. Fan, Extended tanh-function method and its applications to nonlinearequations. PhysLett A, 4-5 (2000) 212–218. [3] AM. Wazwaz, The tanh-function method: Solitons and periodic solutionsfor the Dodd-BulloughMikhailov and the Tzitzeica-Dodd-Bullough equations. Chaos Solitons and Fractals 25 (2005) 55–63. [4] A. Biswas, Optical solitons with time-dependent dispersion, nonlinearity and attenuation in a Kerr-law media, Int. J. Theor. Phys. 48 (2009) 256–260. [5] A. Biswas, 1-Soliton solution of the B(m, n) equation with generalized evolution, Commun. Nonlinear Sci. Numer.Simul. 14 (2009) 3226–3229. [6] A. Biswas, Solitary wave solution for KdV equation with power-law nonlinearity and timedependent coefficients, Nonlinear Dyn. 58 (2009) 345–348. [7] A. Biswas, 1-Soliton solution of the K(m, n) equation with generalized evolution, Phys. Lett. A 372 (2008) 4601–4602. [8] A. Biswas, Solitary wave solution for the generalized Kawahara equation, Appl. Math. Lett. 22 (2009) 208–210. [9] W.X. Ma, Travelling wave solutions to a seventh order generalized KdV equation, Phys. Lett. A 180 (1993) 221–224. [10] W. Malfliet, Solitary wave solutions of nonlinear wave equations, Am. J. Phys. 60 (7) (1992) 650–654. [11] W.X. Ma, T.W. Huang, Y. Zhang, A multiple exp-function method for nonlinear differential equations and its application, Phys. Scr. 82 (2010) 065003. [12] N.A. Kudryashov, Exact solitary waves of the Fisher equation, Phys. Lett. A 342 (1–2) (2005) 99–106. [13] N.A. Kudryashov, Simplest equation method to look for exact solutions of nonlinear differential equations, Chaos Soliton Fract. 24 (5) (2005) 1217–1231. [14] R. Hirota, Exact solution of the Korteweg-de Vries equation for multiple collision of solitons, Phys. Rev. Lett. 27 (1971) 1192–1194. [15] A.M. Wazwaz, Exact solutions for the generalized sine–Gordon and the generalized sinh–Gordon equations, Chaos SolitonFract. 28 (2006) 127–135. | ||
آمار تعداد مشاهده مقاله: 2,684 تعداد دریافت فایل اصل مقاله: 2,288 |