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Abstract By means of the homogeneous balance method we explore a new application of
this method for obtaining the new soliton solutions of the generalized sine-Gordon
equation. The idea introduced in this paper can be applied to other nonlinear evo-
lution equations.We present multiparameter exact solutions involving an arbitrary
number of free parameters and give an exact solution that represents a non-linear
superposition of a traveling wave.
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1. INTRODUCTION

The study of exact solutions of nonlinear evolution equations plays an impor-
tant role in soliton theory and explicit formulas of NPDEs. Also, explicit formulas
may provide physical information and help us to understand the mechanism of re-
lated physical models. A large number of such equations have been studied in these
contexts, and numerous analytic and computational effective techniques have been
proposed to investigate these types of equations.

To this aim, a vast variety of powerful and direct methods for finding the exact signif-
icant solutions of NLPDEs though it is rather difficult have been derived. Some of the
most important methods are tanh- extended tanh method [1-3], solitary wave ansatze
method [4-6], tanh method [7,8],multiple exp-function method [9], Kudryashov method
[10-11], Hirota’s direct method [12,13], transformed rational function method [14] and
others. They produce many kinds of exact solutions to a given evolution equations.
Wazwaz [15] studied the following generalized sine-Gordon equation:

Ut — AUy + bsin(nu) = 0, (1.1)

where a,b are two constants and n is a positive integer. The sine-Gordon equation
is one of the essential nonlinear equations in mathematics and physics. Therefore,
it is important to find solutions for this equation. This equation arises as a special
case of the Toda lattice equation, a well-known soliton equation in one space and one
time dimension, which can be usedto model the interaction of neighboring particles
of equal mass in a lattice formation with a crystal. The sine-Gordon equation has
many applications in many branches ofnonlinear science.
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The layout of this paper is as follows: in Sect. 2, we present basic Algorithm of
the homogeneous balance method and application to the generalized sine-Gordon
equation considered. Section 3 is devoted to some conclusions.

2. ALGORITHM OF THE BINARYHOMOGENEOUS BALANCE METHOD AND ITS
APPLICATION

For a given nonlinear partial differential equation

QD(g(U),U;C,Ut,uxx,’l,ttt,ul-t,...) :O7 (21)

whereg(u)is a composite function which is similar to sin(nu) or sinh(nu), (n = 1,2, ...)
etc. The binary Kudryashov method is simply represented as follows:
We make a transformation

w=3(U(E), (2.2)

where £ = x — ct, are unknown parameters which to be determined later. Substituting
(2.2) into (2.1), yields

U, U U U".) =0. (2.3)
According to the (2.2) consider the following transformation:
£ =z —ct, (2.4)

where A, ¢ are two parameters to be determined later, under the transformation (2.4),
Eq. (2.3) can be rewritten as

Puge — auge + bsin(nu) = 0. (2.5)
We next introduce the transformation
v=-exp(ilnu),i =1 (2.6)
From (2.6) we obtain
1 v+t
u= cos ™! < +2 ) . (2.7)
Inserting Eq. (2.7) into (2.5), yields

bnv® — bnv + 2 (¢® — a) v — 2 (¢ — a) W) =0. (2.8)
Next, we study Eq. (2.8) under the conditions of the homogeneous balance method,
thus we look for exact solution in the form

(&) =Y aid' (), (2.9)
i=0
where a;(i = 1,2,..,n) are real constants to be determined later and ¢satisfy the
Riccati equation
¢ =d¢* +ep+ f. (2.10)
Eq. (2.13) admits the following solutions:

B0
(2]
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Casel: Let ¢ = Y1, b; tanh’ ¢, Balancing ¢/with ¢? in Eq.(2.10) givesm = 1so
¢ = bo + by tanh &. (2.11)
Substituting Eq. (2.11) into Eq. (2.10), we obtain the following solution of Eq. (2.10)

— 1 e+ 2tamn -1 2.12
6=—sodle+2tahe), = -1 (2.12)

Case2: When d = 1,e = 0, the Riccati Eq. (2.10) has the following solutions
¢ = —y/—[f tanh (V=F¢) , f <0,
¢=—-¢  [<0, (2.13)
q/):\/ftan(\/fg), f>0.

Case3:We suppose that the Riccati Eq. (2.10) have the following solutions of the
form:

¢ = A+ Z sinh*™! (A; sinhw + B; coshw) (2.14)
i=1
where Z—“g = sinhw or ‘fi—‘g = coshw. It is easy to find that m = 1 by balancing
¢'with¢?. So we choose
¢ = Ap + Ay sinhw + By coshw, (2.15)
where ‘Cil—‘g = sinhw, we substitute (2.15) and ‘Cil—‘g = sinhw, into (2.10) and set the

coefficients of sinh’w, cosh’w (1=0,1,2;40,1) to zero. We obtain a set of algebraic
equations and solving these equations we have the following solutions

e 1
Ag=——,41=0,B1 = — 2.1
0 5 h 0, By 5d’ (2.16)
where f = 61;4 and
e 1 1
Ay=——, A1 =+y/—,B1 = — 2.1
0 5g VQd’ 1= 50 (2.17)
wheref = %. To Z—“g = sinhw we have
sinhw = — csch§, coshw = — coth &. (2.18)
From (2.16)—(2.18), we obtain
e+ 2coth¢&
_ 2.1
s o, (219)
where f = 61;4 and
e £ csc hé + coth &
= — 2.2
: S Lot (220)
where f = -1

Substituting (2.11-2.20) into (2.8) along with (2.10), then the left hand side of Eq.
(2.8) is converted into a polynomial ing (§); equating each coefficient of the polynomial
to zero yields a set of algebraic equations.
a0
o] €
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Solving the algebraic equations and substituting the results into (2.12), then we obtain
the exact traveling wave solutions for Eq. (1.1).

Remark 1: Iff =0, then the Riccati Eq. (2.10) reduces to the Bernoulli equation
¢ = do? + eo. (2.21)
The solution of the Bernoulli Eq. (2.21) can be written in the following form:

cosh [e (£ + &)] + sinh [e (€ + &)]
1 —dcosh[e (£ + &)] — dsinh[e (€ + &)] ]’

where & is integration constant.

o=

(2.22)

Remark 2: If e = 0, then the Riccati Eq. (2.10) reduces to the Riccati equation
¢ = do? + f.
which the equation aboveis the special case of the Riccati Eq. (2.10).

Remark 3: Also, the Riccati Eq. (2.10) admits the following exact solution:

_ e i Q sech (g{)
= 2d 2 tanh <2€) + C cosh (g{) — %d sinh (gf)’

(2.23)

where 62 = e¢? — 4df and C is a constant of integration.

Next, we study Eqgs. (2.8) under the conditions of our method. For this aim:
Considering the homogeneous balance between highest order derivatives and non-
linear terms

in (2.8) we get n = 2. Consequently, we have

v(€) = a2¢” (&) + a1 (&) + ap, az #0 (2.24)

On substituting (2.24) into (2.8), collecting all terms with the same powers of ¢ (§)
setting each coefficient to zero, we obtain the systems of algebraic equations and with
solving these equations we have:

b¥’n? (3a® — 1)

e =

48f (¢? — a)
N s (a? — 1) — 16adf? (2.25)

= 16422

3bna® — bn 0
a0 = 57 5 50 a1 =

8(e2 +2d

_Ef((;_ 5))612 (2.26)
ag = ———— At

bn
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By substituting (2.24)-(2.26) in (2.7) along with (2.12) we have solution of the Eq.
(1.1) as follows

c 70, d4 b2n2(3a271
2a2bn 48f(c2—a)

C 70, d4 b2 2 3(1271 2 3b 2 b -
na”—bn
2a2bn ( 48 f(c2—a) + 2 tanh (l‘ - Ct)) + 16(e2+-2df) ’

2
u=1cos™ )+2tanh(:cct)) + Bbna®—bn_

T6(ez2df) T

where
b?n? (3a2 — )
T Tasf (2 -
b%n? (a2 - 1) — 16adf?
= —16d2 /2.

From (2.13) and (2.24)-(2.26) we have

2f(c?—a
u=2xcos! [% tanh® (v=F (z — ct)) + W—i—

n

(2f () tanh? (v/=F (w — ct)) + Sngobn f“’") _ ] ,

and

—2(c?—a 2
_ 1 —1 ( ) 3bna”—bn
u = - Cos [ b (m—ct)® + T

—1
72(6270’) + 3bna’—bn
bn (;c (,t)2 32f :

From (2.19) and (2.24)-(2.26) we have

2
— 62704 2’1’7,2 a27 <
u=Lcos! l ( ) (b (3a°-1) + 2 coth (z — ct)) + Sbna®—bn

n 2bn 48 f(c2—a) 16(e2+-2df) +

2 —1
7(c27a) b2n? (3(1271) 3bna’—bn
< % wie—ay T 2coth(z —ct) | + {50 rzap

From (2.20) and (2.24)-(2.26) we have

2
_ —(c*~a b2n?(3a%—1 2
u=21cos™! l (an ) < 48f((527a)) +cesch (z — ct) + coth (z — ct)> + 71361’(2‘21”2?) +

(2 2 2(q 2 2 -t
( (;bn a) <b4v;f((ija)1) + csch (z — et) + coth (z — ct)> + %) :

where

e =

b?n? (3a2 — 1) B b%n? (a2 — 1) — 16adf?
8f(2—a) = 7 —16d2f2
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3. CONCLUSIONS

Wehave developed successfully introduce the homogeneous balance method and ob-
tained wider classes of exact traveling wave solutions for the generalized sine-Gordon
equation by using this binary method. This implies that our method is more powerful
and effective in finding the exact solutions of NLEESs in mathematical physics.We hope
this method can be more effectively used to solve many nonlinear partial differential
equations in applied mathematics, engineering and mathematical physics.
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