تعداد نشریات | 44 |
تعداد شمارهها | 1,304 |
تعداد مقالات | 15,960 |
تعداد مشاهده مقاله | 52,317,194 |
تعداد دریافت فایل اصل مقاله | 15,075,247 |
Dynamic Insights into Gaseous Diffusion: Analytical Soliton and Wave Solutions via Chaffee–Infante Equation in Homogeneous Media | ||
Computational Methods for Differential Equations | ||
مقالات آماده انتشار، پذیرفته شده، انتشار آنلاین از تاریخ 21 آبان 1403 اصل مقاله (1.31 M) | ||
نوع مقاله: Research Paper | ||
شناسه دیجیتال (DOI): 10.22034/cmde.2024.62543.2765 | ||
نویسندگان | ||
Samah Mabrouk1؛ Mahy Mahdy1؛ Rasha Saleh1؛ Ahmed Rashed* 2 | ||
1Department of Physics and Engineering Mathematics, Faculty of Engineering, Zagazig University, Egypt. | ||
21. Department of Physics and Engineering Mathematics, Faculty of Engineering, Zagazig University, Egypt. 2. Basic Science department, Faculty of Engineering, Delta University for Science and Technology, 11152, Gamasa, Egypt. | ||
چکیده | ||
Gaseous diffusion (GD) has been used in various fields, including electromagnetic wave fields, high-energy physics, fluid dynamics, coastal engineering, ion-acoustic waves in plasma physics, and optical fibers. GD involves random molecular movement from areas of high partial pressure to areas of low partial pressure. Researchers have developed models to describe this phenomenon, among these models is the (2 + 1)-dimensional Chaffee–Infante (CI)- equation. This research explores analytical soliton and wave solutions of Gaseous diffusion through a homogeneous medium considering two analytical methods, the Riccati equation and F-expansion methods. Thirty-seven different solutions have been identified and some of these solutions have been illustrated graphically. The figures show a range of bright, dark, singular, singular-periodic, and kink-type soliton wave solutions. | ||
کلیدواژهها | ||
(2 + 1)-dimensional Chaffee–Infante؛ Gaseous Diffusion (GD)؛ Riccati equation method؛ F-expansion method | ||
آمار تعداد مشاهده مقاله: 26 تعداد دریافت فایل اصل مقاله: 59 |