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Abstract

Gaseous diffusion (GD) has been used in various fields, including electromagnetic wave fields, high-energy physics,

fluid dynamics, coastal engineering, ion-acoustic waves in plasma physics, and optical fibers. GD involves random
molecular movement from areas of high partial pressure to areas of low partial pressure. Researchers have devel-

oped models to describe this phenomenon, among these models is the (2 + 1)-dimensional Chaffee–Infante (CI)-

equation. This research explores analytical soliton and wave solutions of Gaseous diffusion through a homoge-
neous medium considering two analytical methods, the Riccati equation and F-expansion methods. Thirty-seven

different solutions have been identified and some of these solutions have been illustrated graphically. The figures

show a range of bright, dark, singular, singular-periodic, and kink-type soliton wave solutions.
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1. Introduction

One of the most significant natural phenomena, widely used in numerous fields such as physics, biology and chemistry
is gaseous diffusion. Gaseous diffusion is the movement of molecules under a concentration gradient. GD has produced
most of the enriched uranium in the world [1]. GD in materials science is widespread, for example, in processes such as
sintering, corrosion, steel hardening, and semiconductor manufacturing. The diffusion of gas in a homogeneous medium
involves studying a particle with a homogeneous temperature under the influence of an external force. Scientists
have developed models to describe this phenomenon, among which is the (2 + 1)-dimensional Chaffee-Infante (CI)
equation [2]. CI equation can depict the physical phenomena of particle diffusion ,which has been extensively used in
electromagnetic wave fields, fluid dynamics, high-energy physics, coastal engineering, fluid mechanics, and ion-acoustic
waves in plasma physics, optical fibers, and other fields [1]. CI equation can depict the physical phenomena of particle
diffusion ,which has been extensively used in electromagnetic wave fields, fluid dynamics, high-energy physics, coastal
engineering, fluid mechanics, and ion-acoustic waves in plasma physics, optical fibers, and other fields [1]. There are
many techniques can be used to solve a wide of higher-dimensional nonlinear equations in the applied sciences and
mathematical physics such as Lie and symmetry analysis [2–14], the inverse scattering transformation method [15],
the Darboux transformation method [16, 17], generalized exponential rational function (GERF) technique [1, 18, 19],
the Riccati equation method [20, 21], the (G/G) expansion [23–25], the tanh-coth (TC) method [26, 27], F-expansion
method [28, 29], the Backlund transformation method [30, 31] ,and extra methods have been developed to get the
exact solutions of nonlinear equations. Recently CI equation has been widely studied by many researchers. Khater
and Ghanbari utilized five methods to obtain the solitary wave solutions for the CI equation: the exp(−φ)-expansion
method, the extended (G’/G)-expansion method, the extended simplest equation method, the extended tanh expansion
method, and the modified Khater method [32]. Moreover, differential quadrature method (DQM) is also an effective
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technique [33]. Also, many of these techniques are very effective in case of fractional calculus. Other techniques can
be found here [34–36] .In [1], the GERF method is used to produce a great number of analytical soliton solutions.
According to Akbar et al.[37] , The first integral method has been employed to find the analytic solutions of the CI
equation. In [38], authors used the modified Khatter method to seek the CI equation with numerous new closed-form
solutions. The solitary wave solution is founded by the extended sinh-Gordon expansion technique [39]. There are
various other techniques for the construction of different kinds of solutions. In this article, we will apply two distinct
methods namely the Riccati equation and F-expansion method to find the analytic solutions of the CI- equation which
has the form:

ψxt + (−ψxx + αψ3 − αψ)x + σψyy = 0, (1.1)

Where, α is the diffusion coefficient and σ is degradation coefficient.
The paper is arranged as follows. Section 2 introduces the Riccati equation method with application to the (2 +
1)-dimensional Chaffee–Infante equation. In section 3, the soliton wave solutions of the CI- equation are argued via
F-expansion method. The paper ends with conclusions in section 4.

2. The Riccati equation method for the (2 + 1)- dimensional CI- equation

In this section the Riccati equation method is discussed and applied to find the soliton solutions of the CI- equation.
The method can be summarized in the following steps:
Step 1: Reduce the order of the partial differential equation via wave transformation. Consider

ψ(x, y, t) = ψ(τ), τ = µx+ λy − γt. (2.1)

Substituting Eq. (2.1) into (1.1) reduces it to:

−µ3ψ
′′′
− µαψ′ + 3µαψ2ψ

′
− µγψ′′ + σλ2ψ′′ = (−µ3ψ

′′
− µαψ + µαψ3)′ +

(
σλ2 − µγ

)
ψ′′ = 0. (2.2)

Which can be simplified after integration to:

−µ3ψ
′′

+
(
σλ2 − µγ

)
ψ′ − µαψ + µαψ3 = 0. (2.3)

Step 2: Assume that the solution of the reduced equation in the a series form:

ψ(τ) =
N∑
i=0

Aiφ
i(τ) (2.4)

where Ai are real constants will be determined, N is positive integer which result via the balancing principle with
higher order non-linear and linear terms in Eq. (2.3), by balancing ψ

′′
and ψ3 gives N=1, and Equation (2.4) is

written as:

ψ(τ) = A0 +A1φ. (2.5)

as φ(τ) satisfies the following Riccati equation:

φ
′
(τ) = aφ2(τ) + bφ+ c (2.6)

where a 6= 0, b and c will be determined later. The solutions of Riccati equation can be written as follows: Case (1):
Ω > 0,

φ(ξ) = − b

2a
−
√

Ω

2a
tanh

(√
Ω

2
ξ + ξ0

)
, (2.7)

φ(ξ) = − b

2a
−
√

Ω

2a
coth

(√
Ω

2
ξ + ξ0

)
. (2.8)

Case (2): Ω < 0,

φ(ξ) = − b

2a
−
√
−Ω

2a
tan

(√
−Ω

2
ξ + ξ0

)
. (2.9)
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φ(ξ) = − b

2a
−
√
−Ω

2a
cot

(√
−Ω

2
ξ + ξ0

)
. (2.10)

Case (3): Ω = 0,

φ(ξ) = − b

2a
− 1

aξ + ξ0
, (2.11)

where Ω = b2 − 4ac,and ξ0 is the integration constant. Step 3: Inserting Eq. (2.5) together with Eq. (2.6) into Eq.
(2.3), collecting all coefficients of each power of f i,0 ≤ i ≤ N in the resulting equation where these coefficients must
vanish. This gives a system of algebraic equations involving the parameters Ai, (i = 1, 2, 3), a, b, µ, λ, γ and c

ψ = A0 +A1ϕ,

ψ
′

= A1ϕ
′

= aA1ϕ
2 + bA1ϕ+ cA1,

ψ
′′

= A1ϕ
′′

= 2a2A1ϕ
3 + 3abA1ϕ

2 +
(
b2A1 + 2acA1

)
ϕ+ cbA,

ψ3 = A3
1ϕ

3 + 3A0A
2
1ϕ

2 + 3A2
0A1ϕ+A3

0,

(2.12)

Substituting (2.12) into (2.3), gathering coefficients of each ϕi power, and setting the sum to zero yields the subsequent
algebraic equations:

Coefficient of ϕ3 = −2µ3a2A1 + µα A3
1, (2.13)

Coefficient of ϕ2 = −3µ3abA1 + aA1σλ
2 − kmaA1 + 3µαA0A

2
1, (2.14)

Coefficient of ϕ = −k3b2A1 − 2µ3acA1 + bA1σλ
2 − bA1µγ + 3µαA2

0A1 − µαA1, (2.15)

Coefficient of ϕ0 = −µ3cbA+ cA1σλ
2 − cA1µγ + µαA3

0 − µαA0, (2.16)

Solving the algebraic system (2.13)-(2.16) using Maple package confers six different groups of solutions of the system
which result in twelve different solutions of the CI Equation (1.1) as:
Group1:

A0 =
bµ√
2α
, A1 =

√
2

α
µa, c =

b2µ2 − 2α

4aµ2
, γ =

σλ2

µ
, and Ω =

2α

µ2
. (2.17)

Case1: Ω > 0

ψ1(τ) = − tanh

(√
2α

2µ
(µx+ λy − γt)

)
, (2.18)

ψ2(τ) = − coth

(√
2α

2µ
(µx+ λy − γt)

)
. (2.19)

The kink wave ψ1 is presented for a = 1, b = 3, c = 1.25, α = 2, t = 1 and γ = λ = µ = 1 at Figure 1, while the
singular-type soliton solution (2.19) at a = 1, b = 3, c = 1.25, α = 2, t = 1 and γ = λ = µ = 1 at Figure 2.
Case (2): Ω < 0,

ψ3(τ) = i tan

(√
−2α

2µ
(µx+ λy − γt)

)
, (2.20)

ψ4(τ) = −i cot

(√
−2α

2µ
(µx+ λy − γt)

)
. (2.21)
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Figure 1. Kink wave ψ1 at a =
1, b = 3, c = 1.25, α = 2, t =
1 and γ = λ = µ = 1.

Figure 2. singular soliton solution
ψ2 at a = 1, b = 3, c = 1.25, α =
2, t = 1 and γ = λ = µ = 1.

Figure 3. The double soliton solu-
tion ψ3 at a = 1, b = 3, c =
1.25, α = 2, t = 1 and γ = λ = µ
= 1.

Figure 4. solitary wave solution
ψ6 at a = 1, b = 3, c = 2, α =
2, t = 1 and γ = 4, λ = µ = 1.

Figure 3 indicates the double soliton solution (2.20) at a = 1, b = 3, c = 1.25, α = −10 and− γ = λ = µ = 5.

Group2:

A0 =

√
2bµ+

√
α

2
√
α

, A1 =

√
2

α
µa , c =

2b2µ2 − α
8aµ2

, γ =
σλ2 + 3√

2

√
α µ2

µ
, andΩ =

α

2µ2 . (2.22)

Case1: Ω > 0

ψ5(τ) =
1

2
− 1

2
tanh

(√
α
2

2µ
(µx+ λy − γt)

)
, (2.23)
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Figure 5. ψ8 at a = 1, b = 3, c = 2, α = 2, t = 1 and γ = 4, λ = µ = 1.

ψ6(τ) =
1

2
− 1

2
coth

(√
α
2

2µ
(µx+ λy − γt)

)
. (2.24)

The solitary wave solution ψ6 at a = 1, b = 3, c = 2, α = 2, t = 1 and γ = 4, λ = µ = 1. is shown in Figure 4.
Case (2): Ω < 0,

ψ7(τ) =
1

2
+

1

2
i tan

(√
−α2

2µ
(µx+ λy − γt)

)
, (2.25)

ψ8(τ) =
1

2
− 1

2
i cot

(√
−α2

2µ
(µx+ λy − γt)

)
. (2.26)

The solution, ψ8 , at a = 1, b = 3, c = 2, α = 2, t = 1 and γ = 4, λ = µ = 1 is depicted in Figure 5.
Group3:

A0 =
−bµ√

2α
, A1 = −

√
2

α
µa , c =

b2µ2 − 2α

4aµ2
, γ =

σλ2

µ
, and Ω =

2α

µ2
. (2.27)

Case1: Ω > 0

ψ9(τ) = tanh

(√
2α

2µ
(µx+ λy − γt)

)
, (2.28)

ψ10(τ) = coth

(√
2α

2µ
(µx+ λy − γt)

)
. (2.29)

Case (2): Ω < 0,

ψ11(τ) = −i tan

(√
−2α

2µ
(µx+ λy − γt)

)
, (2.30)

ψ12(τ) = i cot

(√
−2α

2µ
(µx+ λy − γt)

)
. (2.31)
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Group4:

A0 =

√
2bµ−

√
α

2
√
α

, A1 =

√
2

α
µa , c =

2b2µ2 − α
8aµ2

, γ =
σλ2 − 3√

2

√
α µ2

µ
, Ω =

α

2µ2 (2.32)

Case1: Ω > 0

ψ13(τ) = −1

2
− 1

2
tanh

(√
α
2

2µ
(µx+ λy − γt)

)
, (2.33)

ψ14(τ) = −1

2
− 1

2
coth

(√
α
2

2µ
(µx+ λy − γt)

)
(2.34)

Case (2): Ω < 0,

ψ15(τ) = −1

2
+

1

2
i tan

(√
−α2

2µ
(µx+ λy − γt)

)
, (2.35)

ψ16(τ) = −1

2
− 1

2
i cot

(√
−α2

2µ
(µx+ λy − γt)

)
. (2.36)

Group 5:

A0 =
−
√

2bµ−
√
α

2
√
α

, A1 = −
√

2

α
µa , c =

2b2µ2 − α
8aµ2

, γ =
σλ2 + 3√

2

√
α µ2

µ
, and Ω =

α

2µ2 (2.37)

Case1: Ω > 0

ψ17(τ) = −1

2
+

1

2
tanh

(√
α
2

2µ
(µx+ λy − γt)

)
, (2.38)

ψ18(τ) = −1

2
+

1

2
coth

(√
α
2

2µ
(µx+ λy − γt)

)
. (2.39)

Case (2): Ω < 0,

ψ19(τ) = −1

2
− 1

2
i tan

(√
−α2

2µ
(µx+ λy − γt)

)
, (2.40)

ψ20(τ) = −1

2
+

1

2
i cot

(√
−α2

2µ
(µx+ λy − γt)

)
. (2.41)

Group 6:

A0 =
−
√

2bµ+
√
α

2
√
α

, A1 = −
√

2

α
µa , c =

2b2µ2 − α
8aµ2

, γ =
σλ2 − 3√

2

√
α µ2

µ
, Ω =

α

2µ2 (2.42)

Case1: Ω > 0

ψ21(τ) =
1

2
+

1

2
tanh

(√
α
2

2µ
(µx+ λy − γt)

)
, (2.43)

ψ22(τ) =
1

2
+

1

2
coth

(√
α
2

2µ
(µx+ λy − γt)

)
. (2.44)
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Case (2): Ω < 0,

ψ23(τ) =
1

2
− 1

2
i tan

(√
−α2

2µ
(µx+ λy − γt)

)
, ψ24(τ) =

1

2
+

1

2
i cot

(√
−α2

2µ
(µx+ λy − γt)

)
. (2.45)

Case (3): Ω = 0

ψ25(τ) = − 1

a(µx+ λy − γt)
. (2.46)

3. F-expansion method for the (2 + 1)- dimensional CI- equation

F-expansion method [21, 40] mainly starts from the reduced Equation (2.3), where the solution of the ODE is
assumed to be:

ψ(τ) =
N∑
i=0

siF
i(τ), (3.1)

where, N = 1. This value is obtained from the balancing between the higher order nonlinear and linear terms in Eq.
(2.3) and leads to:

ψ = s0 + s1F,

ψ
′

= s1F
′

= s1(pF 4 +QF 2 +R)
0.5
,

ψ
′′

= s1F
′′

= 2s1pF
3 + s1QF,

ψ3 = s0
3 + 3s0

2s1F + 3s0s1
2F 2 + s1

3F 3.

(3.2)

si are real constants and F (τ) satisfies the following first order ODE:

F
′
(ξ) = (PF 4(ξ) +QF 2 +R)

0.5
(3.3)

as P 6= 0, Q and R are real constants. They will be determined later. The solutions of Eq. (3.3)are illustrated in
terms of Jacobian elliptic functions, for more details see [41]. Inserting Eq. (3.1) together with Eq. (3.3) into Eq.
(2.3), collecting all coefficients of each power of F i, i = 0, 1, . . . , N to zero, results in the following system of algebraic
equations:

Coefficient of F 6 : 4p2s1
2µ6 − 4αps1

4µ4 + α2µ2s1
6 = 0, (3.4)

Coefficient of F 5 : −12αps0s1
3µ4 + 6s0α

2µ2s1
5 = 0, (3.5)

Coefficient of F 4 : 4Qps1
2µ6 − 12αps0

2s1
2µ4 − 2Qαs1

4µ4 + 15α2s0
2µ2s1

4 + 4αps1
2µ4

− 2α2µ2s1
4 − ps1

2σ2λ4 + 2pµγσs1
2λ2 − ps1

2µ2γ2 = 0,
(3.6)

Coefficient ofF 3 : −4αps1s0
3µ4 − 6Qαs0s1

3µ4 + 20α2µ2s0
3s1

3 + 4ps0s1αµ
4 − 8s0α

2µ2s1
3 = 0, (3.7)

Coefficient ofF 3 : −4αps1s0
3µ4 − 6Qαs0s1

3µ4 + 20α2µ2s0
3s1

3 + 4ps0s1αµ
4 − 8s0α

2µ2s1
3

−Qs1
2σ2λ4 + 2Qµγσs1

2λ2 −Qs1
2µ2γ2 = 0,

(3.8)

Coefficient ofF 1 : −2Qαs1s0
3µ4 + 6s1α

2µ2s0
5 + 2αQs0s1µ

4 − 8s1α
2µ2s0

3 + 2s0s1α
2µ2 = 0, (3.9)

Coefficient ofF 0 : α2µ2s0
6 − 2α2µ2s0

4 + α2µ2s0
2 −Rs1

2σ2λ4 + 2Rµγσs1
2λ2 −Rs1

2µ2γ2 = 0, (3.10)
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Figure 6. Kink wave ψ13 at p = 1, Q = −2, R = 1, α = 2, t = 1, γ = λ = µ = 1 and s1 = 1.

Solving the algebraic system (3.4)-(3.10)using MAPLE package confers five different groups of solutions of the system
which result in numerous different solutions of the CI Equation (1.1) as: Group1:

s0 = 0 , s1 = s1 , p =
s1

2α

2µ2
, Q =

−α
µ2

, γ =
σλ2

µ
, (3.11)

Case 1: If P = m2, Q = −1−m2, m = 1,
A kink-type solution is obtained:

ψ26(τ) = (s1 tanh(µx+ λy − γt)) . (3.12)

This solution is plotted in Figure 6 at:

p = 1, Q = −2, R = 1, α = 2, t = 1, γ = λ = µ = 1 and s1 = 1. (3.13)

Case 2: If P = −m2, Q = 2m2 − 1, m = 1,
Bright soliton solutions is obtained:

ψ27(τ) = s1 (sech(µx+ λy − γt) (3.14)

This solution is illustrated in Figure 7 at p = −1, Q = 1, R = 1, α = −1, t = 1, γ = λ = µ = 1, and s1 =
√

2 .
Case 3: If P = 1, Q = −1−m2,
The following solutions are obtained:
a- Singular solution with m = 1

ψ28(τ) = s1 (coth(µx+ λy − γt)) , (3.15)

which is graphed at p = 1, Q = −2, R = 1, α = 2, t = 1, γ = λ = µ = 1 and s1 = 1,in Figure 8.
b- Singular periodic solution with m = 0

ψ29(τ) = s1 (csc(µx+ λy − γt)) . (3.16)

This solution is depicted in Figure 9 at p = 1, Q = −1, R = 1, α = 1, t = 1, γ = λ = µ = 1 and s1 =
√

2 .
Case 4: If P = 1−m2, Q = 2m2 − 1,m = 0
A singular periodic solution is obtained as:

ψ30(τ) = s1 (sec(µx+ λy − γt)) . (3.17)
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Figure 7. Bright kink soliton solu-
tion ψ14 at p = −1, Q = 1, R =
1, α = −1, t = 1, γ = λ = µ =
1 and s1 =

√
2.

Figure 8.

Figure 9. Singular periodic solu-
tion ψ16 at p = 1, Q = −1, R =
1, α = 1, t = 1, γ = λ = µ =
1, and s1 =

√
2 .

Figure 10. Singular periodic solu-
tion ψ17 at p = 1, Q = −1, R =
1, α = 1, t = 1, γ = λ = µ =
1 and s1 =

√
2 .

This solution is illustrated in Figure 10 for p = 1, Q = −1, R = 1, α = 1, t = 1, γ = λ = µ = 1, and s1 =
√

2 .
Group2:

s0 =
1

2
, s1 = s1 , p =

s1
2α

2µ2
, Q =

−α
4µ2

, γ =
σλ2 + 3√

2

√
α µ2

µ
,R =

α

32µ2s1
2

(3.18)

Case 1: If P = m2, Q = −1−m2,m = 1.
A kink-type soliton solution is obtained:

ψ31(τ) =
1

2
+ (s1 tanh(µx+ λy − γt)) . (3.19)

Case 2: If P = −m2, Q = 2m2 − 1, m = 1.
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A Bright and dark soliton solution is obtained:

ψ32(τ) =
1

2
+ s1 (sech(µx+ λy − γt)) . (3.20)

Case 3: If P = 1, Q = −1−m2.
The following solutions are obtained:
a-Singular solution with m = 1

ψ33(τ) =
1

2
+ s1 (coth(µx+ λy − γt)) , (3.21)

b-Singular periodic solution with m = 0.

ψ34(τ) =
1

2
+ s1 (csc(µx+ λy − γt)) . (3.22)

Case 4: If P = 1−m2, Q = 2m2 − 1, m = 0.
A singular periodic solution is obtained:

ψ35(τ) =
1

2
+ s1 (sec(µx+ λy − γt)) . (3.23)

Group3:

s0 =
−1

2
, s1 = s1 , p =

s1
2α

2µ2
, Q =

−α
4µ2

, γ =
σλ2 + 3√

2

√
α µ2

µ
,R =

α

32µ2s1
2
, (3.24)

Case 1: If P = m2, Q = −1−m2,m = 1.
A kink-type soliton solution is obtained:

ψ36(τ) = −1

2
+ (s1 tanh(µx+ λy − γt)) . (3.25)

Case 2: If P = −m2, Q = 2m2 − 1, m = 1.
Bright and dark soliton solutions is obtained:

ψ37(τ) = −1

2
+ s1 (sech(µx+ λy − γt)) . (3.26)

Case 3: If P = 1, Q = −1−m2.
The following solutions are created:
a-Singular solution with m = 1

ψ38(τ) = −1

2
+ s1 (coth(µx+ λy − γt)) , (3.27)

b-Singular periodic solution with m = 0

ψ39(τ) = −1

2
+ s1 (csc(µx+ λy − γt)) . (3.28)

Case 4: If P = 1−m2, Q = 2m2 − 1,m = 0.
A singular periodic solution is created:

ψ40(τ) = −1

2
+ s1 (sec(µx+ λy − γt)) . (3.29)
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Group4:

s0 =
1

2
, s1 = s1 , p =

s1
2α

2µ2
, Q =

−α
4µ2

, γ =
σλ2 − 3√

2

√
α µ2

µ
,R =

α

32µ2s1
2
, (3.30)

Case 1: If P = m2, Q = −1−m2,m = 1.
A kink-type soliton solution is obtained:

ψ41(τ) =
1

2
+ (s1 tanh(µx+ λy − γt)) . (3.31)

Case 2: If P = −m2, Q = 2m2 − 1, m = 1
Bright and dark soliton solution is given:

ψ42(τ) =
1

2
+ s1 (sech(µx+ λy − γt)) . (3.32)

Case 3: If P = 1, Q = −1−m2.
The following solutions are: a-Singular solution with m = 1

ψ43(τ) =
1

2
+ s1 (coth(µx+ λy − γt)) , (3.33)

b-Singular periodic solution with m = 0.

ψ44(τ) =
1

2
+ s1 (csc(µx+ λy − γt)) . (3.34)

Case 4: If P = 1−m2, Q = 2m2 − 1, m = 0.
A singular periodic solution is given in the following form:

ψ45(τ) =
1

2
+ s1 (sec(µx+ λy − γt)) . (3.35)

Group5:

s0 =
−1

2
, s1 = s1 , p =

s1
2α

2µ2
, Q =

−α
4µ2

, γ =
σλ2 − 3√

2

√
α µ2

µ
,R =

α

32µ2s1
2
, (3.36)

Case 1: If P = m2, Q = −1−m2,m = 1.
A kink-type soliton solution is created:

ψ46(τ) = −1

2
+ (s1 tanh(µx+ λy − γt)) . (3.37)

Case 2: If P = −m2, Q = 2m2 − 1, m = 1
Bright and dark soliton solution is given:

ψ47(τ) = −1

2
+ s1 (sech(µx+ λy − γt)) . (3.38)

Case 3: If P = 1, Q = −1−m2.
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The following solutions are created:
a-Singular solution with m = 1.

ψ48(τ) = −1

2
+ s1 (coth(µx+ λy − γt)) , (3.39)

b-Singular periodic solution with m = 0.

ψ49(τ) = −1

2
+ s1 (csc(µx+ λy − γt)) . (3.40)

Case 4: If P = 1−m2, Q = 2m2 − 1,m = 0.
A singular periodic solution is obtained:

ψ50(τ) = −1

2
+ s1 (sec(µx+ λy − γt)) . (3.41)

4. Conclusions

In this article, the dynamical behavior of gas diffusion was examined by investigating the (2 + 1)-dimensional
Chaffee–Infante equation. Firstly, the Riccati equation method is applied reveals six groups of soliton solutions. The
F-expansion method is then applied, confers five different groups of solutions, which result in twenty-five different
solutions. The obtained solutions are varying between kink-type soliton, singular soliton, singular periodic dark and
bright soliton solutions. Many of these solutions are essential for understanding the behavior of high frequency waves.
Such results are tremendously recommended in advanced research and innovation.
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