تعداد نشریات | 44 |
تعداد شمارهها | 1,303 |
تعداد مقالات | 16,035 |
تعداد مشاهده مقاله | 52,537,692 |
تعداد دریافت فایل اصل مقاله | 15,241,809 |
A highly accurate wavelet approach for multi-term variable-order fractional multi-dimensional differential equations | ||
Computational Methods for Differential Equations | ||
مقالات آماده انتشار، پذیرفته شده، انتشار آنلاین از تاریخ 21 مهر 1403 اصل مقاله (1.75 M) | ||
نوع مقاله: Research Paper | ||
شناسه دیجیتال (DOI): 10.22034/cmde.2024.62926.2793 | ||
نویسندگان | ||
Haniye Dehestani؛ Yadollah Ordokhani* | ||
Department of Mathematics, Faculty of Mathematical Sciences, Alzahra University, Tehran, Iran. | ||
چکیده | ||
In this work, the multi-term variable-order fractional multi-dimensional differential equations are studied based on Gegenbauer wavelet functions. The main aim of this paper is to develop the spectral method with the help of modified operational matrices which are directly effective in the numerical process. Therefore, we discuss the novel method of obtaining the modified operational matrices of integration and variable-order (VO) fractional derivative. Then, the overall algorithm for solving multi-term VO-fractional differential equations and partial differential equations is introduced. We also discuss error analysis in detail. At last, we implement the numerical scheme in several examples which involve the damped mechanical oscillator equation, VO-fractional mobile-immobile advectiondispersion equation and VO-fractional nonlinear Galilei invariant advection-diffusion equation. Also, to confirm the theoretical results and demonstrate the accuracy and efficiency of the method, we compare our numerical results with analytical solutions and other existing methods. | ||
کلیدواژهها | ||
Gegenbauer wavelet functions؛ Modified operational matrix؛ Transformation matrix؛ Variable-order fractional derivative؛ Partial differential equations | ||
آمار تعداد مشاهده مقاله: 45 تعداد دریافت فایل اصل مقاله: 92 |