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Abstract

In this work, the multi-term variable-order fractional multi-dimensional differential equations are studied based

on Gegenbauer wavelet functions. The main aim of this paper is to develop the spectral method with the help of

modified operational matrices, which are directly effective in the numerical process. Therefore, we discuss the novel
method of obtaining the modified operational matrices (MOMs) of integration and variable-order (VO) fractional

derivative. Then, the overall algorithm for solving multi-term VO-fractional differential equations and partial differ-

ential equations is introduced. We also discuss error analysis in detail. At last, we implement the numerical scheme
in several examples that involve the damped mechanical oscillator equation, the VO-fractional mobile-immobile

advection-dispersion equation, and the VO-fractional nonlinear Galilei invariant advection-diffusion equation. Also,

to confirm the theoretical results and demonstrate the accuracy and efficiency of the method, we compare our
numerical results with analytical solutions and other existing methods.

Keywords. Gegenbauer wavelet functions, Modified operational matrix, Transformation matrix, Variable-order fractional derivative, Partial dif-

ferential equations.
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1. Introduction

In recent years, fractional derivative and integral operators have attracted considerable attention from researchers
in many fields of science and engineering (see [7–9, 22, 30, 33] and references therein).

For the first time, Samko and Ross [34] suggested the concepts of variable-order fractional differentiation and
integration by extending the use and the notion of the constant-order fractional derivative. Many researchers have
studied the application of fractional derivatives in various sciences. Here, we mention some of them: modeling linear
and nonlinear oscillators with viscoelastic damping [15], modeling of diffusive–convective effects on the oscillatory
flows [31], processing of geographical data [16], and many others, which can be observed in [11, 32, 35, 37, 42].

Recently, numerous researchers have been working diligently to design and analyze numerical solutions for variable-
or constant-order fractional problems. For instance, Li and Wu [29] introduced a new reproducing kernel method
for variable-order fractional boundary value problems. Yaghoobi et al. [41] employed cubic spline approximation for
variable-order fractional differential equations with time delay. Jia et al. [28] developed a fast divided-and-conquer
indirect collocation method for variable-order space-fractional diffusion equations. Dehestani et al. [18] applied
fractional-order Bessel wavelet functions for solving variable-order fractional optimal control problems. Heydari et
al. [26] constructed an operational matrix method for the nonlinear variable-order time fractional reaction-diffusion
equation involving the Mittag-Leffler kernel. Authors in [19] utilized the Mott-fractional Mott functions for finding the
solution of fractional partial integro-differential viscoelastic equations with weakly singular kernel. Arqub and Maayah
[3] employed a reproducing kernel computational approach for time-fractional mobile-immobile advection-dispersion
equations. For more information, see [4, 5].
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In recent years, numerical studies of multi-term variable-order (MT-VO) fractional partial differential equations
have appeared in the literature, such as discrete scheme based on Genocchi polynomials and fractional Laguerre
functions [20], an optimization wavelet method [27], the Legendre wavelets method [12], a collocation method based
on shifted Legendre polynomials [23], and so on.

This paper focuses on the numerical solution of multi-term variable-order fractional partial differential equations.
Also, to demonstrate the applicability of the proposed method in real-life problems, we solve the damped mechanical
oscillator equation, mobile-immobile advection-dispersion equation, and nonlinear Galilei invariant advection-diffusion
equation [1, 2, 40, 43].

Orthogonal functions have attracted the consideration of many mathematicians for approximating the solution of
the problems arising from science and engineering. The main reason for using these functions in solving the problems is
that these functions easily transfer the problem under study to a system of linear or nonlinear algebraic equations. The
reason given became a motivating factor to use Gegenbauer wavelet functions [38] for solving multi-term variable-order
fractional partial differential equations.

1.1. A concise literature review for the wavelet method. The theory of wavelets has attracted the attention of
many investigators in recent years. Wavelets are a really powerful tool for solving a wide range of problems in physics
and engineering disciplines, such as signal analysis and image processing [17].

The wavelet basis functions have many advantages over other basis functions, and they can be implemented in
many problems that can not be solved by analytical methods. It is worth mentioning here that these functions have
many significant advantages: orthogonality, arbitrary regularity, and good localization [13].

Due to the theory of wavelet functions, many wavelet functions have been introduced to approximate the solution of
problems. For example, Chebyshev wavelet functions [27], sine–cosine wavelet functions [36], Haar wavelet functions
[6, 25], fractional-order Alpert multiwavelet functions [24], Legendre wavelet functions [12], and fractional-order Bessel
wavelet functions [18].

In this paper, we concentrate on describing the discretization methods based on Gegenbauer wavelet functions
(GWFs). These functions have been constructed by shifted Gegenbauer polynomials (SGPs) [21, 39], which inherit
some of the features of these polynomials. Also, we introduce the method to calculate the components of modified
operational matrices of integration and VO-fractional derivative, which play a significant role in numerical algorithms.
The advantages of the current approach are listed as follows:

• The accurate integral operational matrix of GWFs is computed.
• Achieving a highly accurate approximate solution and satisfactory results requires leveraging the low values

of the Gegenbauer wavelet functions.
• The operational matrices are more accurate in comparison to the operational matrix obtained by the usual

methods, and this feature causes us to get the approximate solution with high precision.

The layout of the paper is as follows: The Gegenbauer wavelet functions and some properties of them are introduced
in section 2. In section 3 a novel method to describe the elements of the modified operational matrix of integration is
proposed. Section 4 is devoted to computing the modified operational matrix of the fractional derivative. The numerical
scheme for solving MT-VO-fractional differential equations and MT-VO-fractional partial differential equations is
described in detail in section 5. Section 6 investigates the error estimation of the method in Sobolev space. In section
7, we implement the numerical algorithms for several test problems. Section 8 gives a brief conclusion.

1.2. General form of problem statement. In this paper, we focus on the new numerical technique to obtain the
approximate solution of the following equations:
Problem 1: Multi-term variable-order fractional differential equations

F
(
t, u(t), u′(t), Dν(t)u(t), Dγ(t)u(t)

)
= f(t), 1 < ν(t) ≤ 2, 0 < γ(t) ≤ 1, (1.1)

with the initial conditions
u(0) = a0, u′(0) = a1,

where Dν(t) and Dγ(t) denote the Caputo fractional derivatives of the variable-order [20].
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Problem 2: Multi-term variable-order fractional partial differential equations

H
(
x, t, u(x, t),

∂u(x, t)

∂x
,
∂2u(x, t)

∂x2
, D

ν(x,t)
t u(x, t), D

γ(x,t)
t u(x, t), D

ϑ(x,t)
t

(
∂2u(x, t)

∂x2

))
= h(x, t), (1.2)

0 < ν(x, t), γ(x, t), ϑ(x, t) ≤ 1,

subject to the initial and boundary conditions

u(x, 0) = ϕ(x), u(0, t) = ρ0(t), u(1, t) = ρ1(t), x ∈ [0, 1], t ∈ [0, 1].

Here, D
ν(x,t)
t , D

γ(x,t)
t , and D

ϑ(x,t)
t denote the Caputo fractional derivatives of the variable-order [20]. The general form

of the proposed derivative of order q − 1 < µ(x, t) ≤ q with respect to variable t is defined as follows [20]:

D
µ(x,t)
t u(x, t) =


1

(q−µ(x,t))

∫ t
0
(t− s)q−µ(x,t)−1 ∂

qu(x,s)
∂sq ds, q − 1 < µ(x, t) < q,

∂qu(x,t)
∂tq , µ(x, t) = q ∈ N.

2. Gegenbauer wavelet functions

The Gegenbauer wavelet functions over the interval [0, 1) are defined by the following formula [38]:

Ψnm(x) =


2
K−1

2 G̃λm
(
2K−1x− n+ 1

)
, n−1

2K−1 ≤ x < n
2K−1 ,

0, otherwise,

m = 0, 1, . . . ,M, n = 1, 2, . . . , 2K−1, (2.1)

where K is any positive integer. Furthermore

G̃λm
(
2K−1x− n+ 1

)
=

1√
(Γ(λ+ 1

2 ))2Γ(m+2λ)

(Γ(2λ))2(2m+2λ)m!

Gλm
(
2K−1x− n+ 1

)
. (2.2)

In the above formula, Gλm(x) denotes the Gegenbauer polynomials of order m, which are defined as follows [38]:

Gλm(x) =
Γ(λ+ 1

2 )

Γ(2λ)

m∑
k=0

(−1)m−kΓ(m+ k + 2λ)

Γ(k + λ+ 1
2 )(m− k)!k!

xk, m = 0, 1, . . . ,M. (2.3)

In addition, the Gegenbauer polynomials are orthogonal with respect to the weight function ωλ(x) = (x− x2)λ−
1
2 on

the interval [0, 1). So that∫ 1

0

ωλ(x)Gλm(x)Gλn(x)dx =

{
0, m 6= n,

hλm, m = n,
m, n = 0, 1, . . . ,M,

where

hλm =
(Γ(λ+ 1

2 ))2Γ(m+ 2λ)

(Γ(2λ))2(2m+ 2λ)m!
.

We also demonstrate the curve of GWFs with M = K = 2 in Figure 1.

2.1. Function approximation. Any square integrable function f(x) can be expanded by Gegenbauer wavelet func-
tions over the interval [0, 1) as follows:

f(x) '
2K−1∑
n=1

M∑
m=0

fnmΨnm(x) = FTΨ(x), (2.4)

where

F = [f10, f11, . . . , f1M|f20, f21, . . . , f2M| . . . |f2K−10, f2K−11, . . . , f2K−1M]
T
,

and

Ψ(x) = [Ψ10(x),Ψ11(x), . . . ,Ψ1M(x)| . . . |Ψ2K−10(x),Ψ2K−11(x), . . . ,Ψ2K−1M(x)]
T
.
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Figure 1. The curve of the GWFs with M = K = 2.

Each component of the vector F can be calculated according to the following relation:

fnm =

∫ 1

0

ωλ(2K−1x− n+ 1)f(x)Ψnm(x)dx, m = 0, 1, . . . ,M, n = 1, 2, . . . , 2K−1.

2.2. Transformation matrix from GWFs to SGPs. The current part provides the transformation matrix from
GWFs to SGPs:

Ψ2K−1(M+1)×1(x) = Θ2K−1(M+1)×(M+1)G
λ
(M+1)×1(x), (2.5)

where

Θ =


Θ1, 0 ≤ x < 1

2K−1 ,

Θ2,
1

2K−1 ≤ x < 2
2K−1 ,

...

Θ2K−1 , 2K−1−1
2K−1 ≤ x < 1,

is called the transformation matrix. So that, the components of the proposed matrix is design as follows:

Θn =

[
O O . . . Θ̃n︸︷︷︸

defined on [ n−1

2K−1 ,
n

2K−1 )

. . . O O
]T

, n = 1, 2, . . . , 2K−1,

where O denotes the zero matrix with (M + 1) × (M + 1) dimension. In a particular case, for M = 2,K = 2 and
λ = 1, we have

Ψ10(x) =
√

2 =
√

2G1
0(x),

Ψ11(x) = 4
√

6x−
√

6 =
√

6G1
0(x) +

√
6G1

1(x),

Ψ12(x) = 64
√

30
23x

2 − 32
√

30
23x+ 3

√
30
23 = 63

√
30
23G

1
0(x)− 24

√
30
23G

1
1(x) + 4

√
30
23G

1
2(x),

 0 ≤ x < 1
2 ,

and

Ψ20(x) =
√

2 =
√

2G1
0(x),

Ψ21(x) = 4
√

6x− 3
√

6 = −
√

6G1
0(x) +

√
6G1

1(x),

Ψ22(x) = 64
√

30
23x

2 − 96
√

30
23x+ 35

√
30
23 = 127

√
30
23G

1
0(x)− 40

√
30
23G

1
1(x) + 4

√
30
23G

1
2(x),

 1
2 ≤ x < 1.
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Then, the transformation matrix is calculated as follows:

Θ =

{
Θ1, 0 ≤ x < 1

2 ,

Θ2,
1
2 ≤ x < 1,

where

Θ1 =



√
2 0 0√
6

√
6 0

63
√

30
23 −24

√
30
23 4

√
30
23

0 0 0
0 0 0
0 0 0


, Θ2 =



0 0 0
0 0 0
0 0 0√
2 0 0

−
√

6
√

6 0

127
√

30
23 −40

√
30
23 4

√
30
23


.

3. The modified operational matrix of integration

In this section, we improve the technique of calculating the operational matrix of integration. First, we obtain the
modified operational matrix of integration for SGPs. Then, according to the transformation matrix, we introduce a
modified operational matrix of integration for GWFs. To achieve the desired purpose, we consider∫ x

0

Gλ(ξ)dξ = ΥGλ(x) + ∆(x). (3.1)

Here, Υ is called a modified operational matrix, and ∆(x) is the complement vector. In order to obtain the elements
of the modified operational matrix and the complement vector, we use the analytical form of SGPs as follows:∫ x

0

Gλm(ξ)dξ =

∫ x

0

Γ(λ+ 1
2 )

Γ(2λ)

m∑
k=0

(−1)m−kΓ(m+ k + 2λ)

Γ(k + λ+ 1
2 )(m− k)!k!

ξkdξ =

m∑
k=0

δλm,kx
k+1, (3.2)

where

δλm,k =
Γ(λ+ 1

2 )

Γ(2λ)

(−1)m−kΓ(m+ k + 2λ)

Γ(k + λ+ 1
2 )(m− k)!(k + 1)!

.

To go on with the process of the method, we need to expand xk+1 by SGPs. Hence, we have

xk+1 =

M∑
i=0

aiG
λ
i (x).

On the other hand, using the above relation and to prevent the increase of error, we consider∫ x

0

Gλm(ξ)dξ =


∑M
i=0

(∑m
k=0 η

λ
m,k,i

)
Gλi (x), m = 0, 1, . . . ,M− 1,∑M

i=0

(∑m−1
k=0 ηλm,k,i

)
Gλi (x) + δλM,kx

M+1, m =M,
(3.3)

where ηλm,k,i = δλm,kai. Therefore, the general form of the modified operational matrix and the complement vector are
gained as follows:

Υ =


ηλ0,0,0 ηλ0,0,1 . . . ηλ0,0,M∑1
k=0 η

λ
1,k,0

∑1
k=0 η

λ
1,k,1 . . .

∑1
k=0 η

λ
1,k,M

...
...

. . .
...∑M−1

k=0 ηλM−1,k,0

∑M−1
k=0 ηλM−1,k,1 . . .

∑M−1
k=0 ηλM−1,k,M∑M−1

k=0 ηλM,k,0

∑M−1
k=0 ηλM,k,1 . . .

∑M−1
k=0 ηλM,k,M


(M+1)×(M+1)

,

and

∆(x) = [∆m(x)](M+1)×1, ∆m(x) =

{
0, m = 0, 1, . . . ,M− 1,

δλM,kx
M+1, m =M.
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For example, for M = 2 and λ = 1, we get

Υ =

 0.5 0.25 0
−0.375 0 0.125
−1 −1.25 −0.5

 , ∆(x) =

 0
0

16
3 x

3

 .
Now, with the help of the mentioned process and transformation matrix, we get∫ x

0

Ψ(ξ)dξ =

∫ x

0

ΘGλ(ξ)dξ = Θ

∫ x

0

Gλ(ξ)dξ = Θ
(
ΥGλ(x) + ∆(x)

)
= ΘΥΘ−1Ψ(x) + Θ∆(x) = QΨ(x) + Θ∆(x), Q = ΘΥΘ−1. (3.4)

It should be mentioned that to calculate matrix Θ−1, it is sufficient to compute Θ̃−1. Thus, we have

Θ−1 =


Θ−1

1 , 0 ≤ x < 1
2K−1 ,

Θ−1
2 , 1

2K−1 ≤ x < 2
2K−1 ,

...

Θ−1
2K−1 ,

2K−1−1
2K−1 ≤ x < 1,

where

Θ−1
n =

[
O O . . . Θ̃−1

n︸︷︷︸
defined on [ n−1

2K−1 ,
n

2K−1 )

. . . O O
]T

, n = 1, 2, . . . , 2K−1.

According to the above results, we also have the following relation for variable t:∫ t

0

Ψ(η)dη = Q̄Ψ(t) + Θ∆̄(t). (3.5)

4. The modified operational matrix of the VO-fractional derivative

In this section, the purpose is to compute the modified operational matrix of the fractional derivative of GWFs.
First, we obtain the modified operational matrix of the VO-fractional derivative for SGPs. Let

D
µ(x,t)
t Gλ(t) '

Γ(λ+ 1
2 )

Γ(2λ)
tq−µ(x,t)RGλ(t), q − 1 < µ(x, t) ≤ q. (4.1)

Hence, to gain each component of the proposed matrix, we apply the transformation matrix and Eq. (2.3) as follows:

D
µ(x,t)
t Gλm(t) =

Γ(λ+ 1
2 )

Γ(2λ)

m∑
k=0

(−1)m−kΓ(m+ k + 2λ)

Γ(k + λ+ 1
2 )(m− k)!k!

D
µ(x,t)
t

(
tk
)

=
Γ(λ+ 1

2 )

Γ(2λ)

m∑
k=0

µλm,kD
µ(x,t)
t

(
tk
)
. (4.2)

In view of the properties of the Caputo variable-order derivative, we have

D
µ(x,t)
t tk =

{
Γ(k+1)

Γ(k−µ(x,t)+1) t
k−µ(x,t), k = q, q + 1, . . . ,M,

0, otherwise.

Therefore, it can be deduced that

D
µ(x,t)
t Gλm(t) =

Γ(λ+ 1
2 )

Γ(2λ)

m∑
k=0

βλm,kt
k−µ(x,t) =

Γ(λ+ 1
2 )

Γ(2λ)
tq−µ(x,t)

m∑
k=0

βλm,kt
k−q, (4.3)

where

βλm,k =

{
Γ(k+1)

Γ(k−µ(x,t)+1)µ
λ
m,k, k = q, q + 1, . . . ,M,

0, otherwise.
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Now, by expanding tk−q with respect to SGPs, we conclude

tk−q '
M∑
j=0

ajG
λ
j (t).

By substituting the aforementioned relation in Eq. (4.3), we obtain

D
µ(x,t)
t Gλm(t) =

Γ(λ+ 1
2 )

Γ(2λ)
tq−µ(x,t)

m∑
k=0

βλm,k

M∑
j=0

ajG
λ
j (t)


=

Γ(λ+ 1
2 )

Γ(2λ)
tq−µ(x,t)

M∑
j=0

(
m∑
k=0

rλm,k,j

)
Gλj (t), (4.4)

where rλm,k,j = βλm,kaj . As a result, from Eq. (4.4), the following relation is obtained:

D
µ(x,t)
t Gλm(t) '

Γ(λ+ 1
2 )

Γ(2λ)
tq−µ(x,t)

[ ∑m
k=0 r

λ
m,k,0

∑m
k=0 r

λ
m,k,1 . . .

∑m
k=0 r

λ
m,k,M

]
Gλ(t).

Thus, we have

R =


rλ0,k,0 rλ0,k,1 . . . rλ0,k,M∑1
k=0 r

λ
1,k,0

∑1
k=0 r

λ
1,k,1 . . .

∑1
k=0 r

λ
1,k,M

...
...

. . .
...∑M

k=0 r
λ
M,k,0

∑M
k=0 r

λ
M,k,1 . . .

∑M
k=0 r

λ
M,k,M

 .
Next, one can derive the modified operational matrix of the fractional derivative of GWFs by using the transformation
matrix. Thus, we deduce

D
µ(x,t)
t Ψ(t) = ΘD

µ(x,t)
t

(
Gλ(t)

)
'

Γ(λ+ 1
2 )

Γ(2λ)
tq−µ(x,t)ΘRGλ(t) (4.5)

=
Γ(λ+ 1

2 )

Γ(2λ)
tq−µ(x,t)ΘRΘ−1Ψ(t) =

Γ(λ+ 1
2 )

Γ(2λ)
tq−µ(x,t)DΨ(t), D = ΘRΘ−1.

5. Implementation of the numerical scheme

In this section, we discuss the idea of solving the equations mentioned in problems 1 and 2.

5.1. MT-VO-fractional differential equations. This section considers the computational approach for solving
MT-VO-fractional differential equations. First, we approximate the second derivative u′′(t) by GWFs

u′′(t) ' ATΨ(t). (5.1)

Now, by integrating Eq. (5.1), we determine the approximation of other functions in Problem 1 as follows:

u′(t) ' AT
(
Q̄Ψ(t) + Θ∆̄(t)

)
+ a1, (5.2)

and

u(t) ' AT
(
Q̄2Ψ(t) + Q̄Θ∆̄(t) + ΘW (t)

)
+ a1t+ a0, (5.3)

where the function W (t) is defined as follows:

W (t) =

∫ t

0

∆̄(η)dη, W (t) = [Wm(t)] , Wm(t) =

{
0, m = 0, 1, . . . ,M− 1,
δλM,k

M+2 t
M+2, m =M.

With the help of the properties of the Caputo VO-fractional derivative and Eq. (5.3), we have

Dν(t)u(t) ' AT
(

Γ(λ+ 1
2 )

Γ(2λ)
t2−ν(t)Q̄2DΨ(t) + Q̄ΘZ(t) + ΘY (t)

)
, (5.4)
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where

Z(t) = Dν(t)∆̄(t),

Z(t) = [Zm(t)] , Zm(t) =

{
0, m = 0, 1, . . . ,M− 1,

δλM,k
Γ(M+2)

Γ(M+2−ν(t)) t
M+1−ν(t), m =M,

and

Y (t) = Dν(t)W (t),

Y (t) = [Ym(t)] , Ym(t) =

{
0, m = 0, 1, . . . ,M− 1,
δλM,k

M+2
Γ(M+3)

Γ(M+3−ν(t)) t
M+2−ν(t), m =M.

Additionally, we get

Dγ(t)u(t) ' AT
(

Γ(λ+ 1
2 )

Γ(2λ)
t1−γ(t)Q̄2DΨ(t) + Q̄ΘZ(t) + ΘY (t)

)
+

a1

Γ(2− γ(t))
t1−γ(t). (5.5)

Finally, to evaluate the approximate solution of the equation in Problem 1, we replace the above results in Eq. (1.1)
as follows:

F


t, AT

(
Q̄2Ψ(t) + Q̄Θ∆̄(t) + ΘW (t)

)
+ a1t+ a0,

AT
(
Q̄Ψ(t) + Θ∆̄(t)

)
+ a1,

AT
(

Γ(λ+ 1
2 )

Γ(2λ) t
2−ν(t)Q̄2DΨ(t) + Q̄ΘZ(t) + ΘY (t)

)
,

AT
(

Γ(λ+ 1
2 )

Γ(2λ) t
1−γ(t)Q̄2DΨ(t) + Q̄ΘZ(t) + ΘY (t)

)
+ a1

Γ(2−γ(t)) t
1−γ(t)

 = f(t).

(5.6)

At last, by substituting the nodal collocation points [21] in Eq. (5.6), the problem converts to an algebraic system of
equations. This procedure provides the approximate solution of the exact solution. The summary of the numerical
method is given explicitly by Algorithm 1 below.

Algorithm 1 The numerical method for the MT-VO-fractional differential equations
Input: Choose the values of M and K.
Step 1: Expand u′′(t) by GWFs.
Step 2: Obtain the transformation matrix Θ.
Step 3: Compute the modified operational matrix (MOM) of integration Q̄ and vector ∆̄(t).
Step 4: Evaluate the MOM of the VO-fractional derivative of orders ν(t) and γ(t).
Step 5: Assign the vectors W (t), Z(t) and Y (t).
Step 6: Solve the system of the nonlinear algebraic equations similar to Eq. (23).
Step 7: Evaluate the unknown vector A.
Output: Replace the vector obtained in Step 7 in Eq. (5.3) and compute the approximate solution.

5.2. MT-VO-fractional partial differential equations. In this section, the numerical algorithm for solving Prob-

lem 2 will be introduced. First, we expand the third partial derivative ∂3u(x,t)
∂x2∂t by GWFs

∂3u(x, t)

∂x2∂t
' ΨT (x)UΨ(t). (5.7)

Now, by integrating Eq. (5.7) with respect to t, the following relation is generated:

∂2u(x, t)

∂x2
' ΨT (x)U

(
Q̄Ψ(t) + Θ∆̄(t)

)
+ ϕ′′(x) = X2(x, t). (5.8)

Also, by integrating Eq. (5.8) two times with respect to t, we conclude

∂u(x, t)

∂x
'
(
ΨT (x)QT + ∆T (x)ΘT

)
U
(
Q̄Ψ(t) + Θ∆̄(t)

)
+ ϕ′(x)− ϕ′(0) +

∂u(0, t)

∂x
= X1(x, t), (5.9)
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so that, by integrating Eq. (5.9) with respect to x from 0 to 1, the unknown function ∂u(0,t)
∂x is obtained

∂u(0, t)

∂x
= ρ1(t)− ρ0(t)−

([∫ 1

0

ΨT (x)dx

]
QT +

[∫ 1

0

∆T (x)dx

]
ΘT

)
U
(
Q̄Ψ(t) + Θ∆̄(t)

)
− ϕ(1) + ϕ(0) + ϕ′(0). (5.10)

In addition, we deduce

u(x, t) '
(
ΨT (x)Q2T + ∆T (x)ΘTQT + ∆T (x)ΘT

)
U
(
Q̄Ψ(t) + Θ∆̄(t)

)
(5.11)

+ ϕ(x)− ϕ(0)− xϕ′(0) + x
∂u(0, t)

∂x
+ ρ0(t)

=
(
ΨT (x)Q2T + ∆T (x)ΘTQT + ∆T (x)ΘT

)
U
(
Q̄Ψ(t) + Θ∆̄(t)

)
+ ϕ(x)− ϕ(0)− xϕ′(0) + x

[
ρ1(t)− ρ0(t)−

([∫ 1

0

ΨT (x)dx

]
QT +

[∫ 1

0

∆T (x)dx

]
ΘT

)
× U

(
Q̄Ψ(t) + Θ∆̄(t)

)
− ϕ(1) + ϕ(0) + ϕ′(0)

]
+ ρ0(t) = X0(x, t).

Then, with the help of the properties of the VO-fractional Caputo derivative operator and Eq. (5.11), we get

D
ν(x,t)
t u(x, t) '

(
ΨT (x)Q2T + ∆T (x)ΘTQT + ∆T (x)ΘT

)
U

(
Γ(λ+ 1

2 )

Γ(2λ)
tq−ν(x,t)Q̄DΨ(t) + ΘZ(t)

)
+ x

[
D
ν(x,t)
t ρ1(t)−Dν(x,t)

t ρ0(t)−
([∫ 1

0

ΨT (x)dx

]
QT +

[∫ 1

0

∆T (x)dx

]
ΘT

)
× U

(
Γ(λ+ 1

2 )

Γ(2λ)
tq−ν(x,t)Q̄DΨ(t) + ΘZ(t)

)]
+D

ν(x,t)
t ρ0(t) = Xν

0(x, t). (5.12)

Furthermore, according to Eq. (5.8), we have

D
ϑ(x,t)
t

(
∂2u(x, t)

∂x2

)
' ΨT (x)U

(
Γ(λ+ 1

2 )

Γ(2λ)
tq−ϑ(x,t)Q̄DΨ(t) + ΘZ(t)

)
= Xϑ

2 (x, t).

The combination of the above approximate relations and the equation in Problem 2 can be concluded to be

H
(
x, t,X0(x, t),X1(x, t),X2(x, t),Xν

0(x, t),Xγ
0(x, t),Xϑ

2 (x, t)
)

= h(x, t). (5.13)

By placing the nodal points defined in [21] into Eq. (5.13), we get the following system of algebraic equations:

H
(
xi, tj ,X0(xi, tj),X1(xi, tj),X2(xi, tj),X

ν
0(xi, tj),X

γ
0(xi, tj),X

ϑ
2 (xi, tj)

)
= h(xi, tj), (5.14)

i = 1, 2, . . . , 2K−1(M1 + 1) + 1, j = 1, 2, . . . , 2K−1(M2 + 1) + 1.

At last, using Newton’s iterative method, we achieve the approximate solution of the equation in Problem 2. The
summary of the numerical technique is mentioned explicitly by Algorithm 2 below.

Algorithm 2 The numerical method for the MT-VO-fractional partial differential equations
Input: Choose the values of M1,M2 and K.

Step 1: Expand ∂3u(x,t)
∂x2∂t by GWFs.

Step 2: Obtain the transformation matrix Θ.
Step 3: Compute the modified operational matrices of integration Q, Q̄ and vectors ∆(x), ∆̄(t).
Step 4: Evaluate the MOM of the VO-fractional derivative of orders ν(x, t), γ(x, t) and ϑ(x, t).
Step 5: Assign the vector Z(t) .
Step 6: Solve the system of the nonlinear algebraic equations similar to Eq. (31).
Step 7: Evaluate the unknown matrix U .
Output: Replace the vector obtained in Step 7 in Eq. (5.11) and compute the approximate solution.
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6. Error estimation

The purpose of this section is to introduce the error analysis of the proposed scheme in the Sobolev space. The
norm of integer order β ≥ 0 in the Sobolev space Hβ(S), S = (a, b)d with d = 2, is defined with the following formula
[10]:

‖u‖Hβ(S) =

(
β∑
r=0

d∑
i=1

‖Dr
i u‖

2
L2(S)

) 1
2

,

where Dr
i is the r-th derivative of u regarding the i-th variable. To simplify the results, it is also useful to introduce

the semi-norm as

|u|Hβ;M(S) =

 µ∑
r=min(β,M+1)

d∑
i=1

‖Dr
i u‖

2
L2(S)

 1
2

.

Lemma 6.1. Let v : InK → R2, InK = [ n−1
2K−1 ,

n
2K−1 )× [ n−1

2K−1 ,
n

2K−1 ) is defined in Hβ(InK). If the function w : Ω→ R2,

Ω = (−1, 1)× (−1, 1) such that w(x, t) = v( 1
2K
x+ 2n−1

2K
, 1

2K
t+ 2n−1

2K
). Then, for all (x, t) ∈ Ω and 0 ≤ r ≤ β, we get

‖Dr
iw‖L2(Ω) = 2K(1−r) ‖Dr

i u‖L2(InK) , i = 1, 2. (6.1)

Proof. We have

‖Dr
iw‖L2(Ω) =

(∫ 1

−1

∫ 1

−1

|Dr
iw(x, t)|2 dxdt

) 1
2

(6.2)

=

(∫ 1

−1

∫ 1

−1

∣∣∣∣Dr
iw(

1

2K
x+

2n− 1

2K
,

1

2K
t+

2n− 1

2K
)

∣∣∣∣2 dxdt
) 1

2

=

(∫
InK

∫
InK

22K(1−r) |Dr
i u(y, z)|2 dydz

) 1
2

= 2K(1−r) ‖Dr
i u‖L2(InK) ,

where the above results are obtained by the following change of variables:

y =
1

2K
x+

2n− 1

2K
, z =

1

2K
t+

2n− 1

2K
.

�

Theorem 6.2. Suppose that u ∈ Hβ(∆), ∆ = (0, 1)× (0, 1) with β ≥ 1,M1 =M2 =M, and n1 = n2 = n. If

uM1,M2
(x, t) =

2K−1∑
n1=1

2K−1∑
n2=1

M∑
m1=0

M∑
m2=0

an1n2m1m2
Ψn1m1

(x)Ψn2m2
(t),

is the best approximation of u, then

‖u− uM1,M2‖L∞(∆) ≤ CM
1
2−µ max

n=1,2,...,2K−1

 µ∑
r=min(β,M+1)

d∑
i=1

22K(1−r) ‖Dr
i u‖

2
L2(InK)

 1
2

, (6.3)

where C is a positive constant independent of M.

Proof. According to the maximum norm definition, we have

‖u− uM1,M2
‖L∞(∆) = max

n=1,2,...,2K−1
‖u− uM1,M2

‖L∞(InK) . (6.4)
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In addition, by using change variable roles x = 1
2K
ξ + 2n−1

2K
and t = 1

2K
η + 2n−1

2K
, it can be concluded that

‖u− uM1,M2‖L∞(InK) = sup
[x,t]∈InK

|u(x, t)− uM1,M2(x, t)| (6.5)

= sup
[ξ,η]∈Ω

∣∣∣∣u(
1

2K
ξ +

2n− 1

2K
,

1

2K
η +

2n− 1

2K
)

− uM1,M2
(

1

2K
ξ +

2n− 1

2K
,

1

2K
η +

2n− 1

2K
)

∣∣∣∣ .
By considering

u

(
1

2K
ξ +

2n− 1

2K
,

1

2K
η +

2n− 1

2K

)
= v(ξ, η),

and

uM1,M2

(
1

2K
ξ +

2n− 1

2K
,

1

2K
η +

2n− 1

2K

)
= vM1,M2(ξ, η),

on the interval Ω, we deduce

‖u− uM1,M2
‖L∞(InK) = sup

[ξ,η]∈Ω

|v(ξ, η)− vM1,M2
(ξ, η)| (6.6)

= ‖v − vM1,M2
‖L∞(Ω) .

On the other hand, from [10], we have

‖v − vM1,M2
‖L∞(Ω) ≤ CM

1
2−β |v|β;M

H(Ω) . (6.7)

Also, from Lemma 1, we obtain

|v|β;M
H(Ω) =

 β∑
r=min(β,M+1)

d∑
i=1

‖Dr
i v‖

2
L2(Ω)

 1
2

=

 β∑
r=min(β,M+1)

d∑
i=1

22K(1−r) ‖Dr
i u‖

2
L2(InK)

 1
2

. (6.8)

Therefore, we conclude

‖u− uM1,M2
‖L∞(InK) ≤ CM

1
2−β

 β∑
r=min(β,M+1)

d∑
i=1

22K(1−r) ‖Dr
i u‖

2
L2(InK)

 1
2

. (6.9)

Finally, by combining Eqs. (6.4) and (6.9), the desired result is achieved. �

Corollary 6.3. Regarding the assumptions of the previous theorem and by considering β ≥ 1, d = 2, and M≥ β − 1,
we infer

‖u− uM1,M2
‖L∞(∆) ≤ CM

1
2−β22K(1−β) max

n=1,2,...,2K−1

(
d∑
i=1

‖Dµ
i u‖

2
L2(InK)

) 1
2

. (6.10)

From this result, it can be seen that by increasing the values of M and K, the error tends to zero.
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Table 1. The absolute errors for diverse values of K, ν(t), and γ(t) with M = 5 of Example 7.1.

ν(t) = 2− sin2(t), γ(t) = 1− 0.5 exp(−t) ν(t) = 15−sin5(t)
10 , γ(t) = 3(sin(t)+cos(t))

5
t K = 1 K = 2 K = 1 K = 2

0.1 1.6710× 10−13 5.2043× 10−18 8.7196× 10−13 6.6296× 10−18

0.2 1.0545× 10−13 4.7129× 10−17 1.2609× 10−12 8.1438× 10−18

0.3 4.3564× 10−14 1.7330× 10−16 1.6094× 10−12 6.2401× 10−17

0.4 1.7005× 10−14 4.1160× 10−16 1.9153× 10−12 5.9443× 10−16

0.5 7.4424× 10−14 7.4106× 10−16 2.1793× 10−12 2.6322× 10−15

0.6 1.2681× 10−13 3.0957× 10−14 2.4046× 10−12 4.6165× 10−15

0.7 1.7258× 10−13 1.3039× 10−13 2.5962× 10−12 3.9902× 10−15

0.8 2.1080× 10−13 3.0741× 10−13 2.7603× 10−12 8.7256× 10−16

0.9 2.4177× 10−13 5.4943× 10−13 2.9036× 10−12 4.3534× 10−15

0.9 2.6768× 10−13 7.9712× 10−13 3.0318× 10−12 9.7541× 10−15

7. Numerical examples

In this section, we implement the numerical approach in several numerical tests in order to demonstrate the efficiency
and applicability of the scheme.

Example 7.1. Consider the following multi-term variable-order fractional differential equation [27]:

D
ν(t)
t u(t) + sin(t)D

γ(t)
t u(t) + cos(t)u(t) =

6t3−ν(t)

Γ(4− ν(t))
+

6 sin(t)t3−γ(t)

Γ(4− γ(t))
+ t3 cos(t), 1 < ν(t) ≤ 2, 0 < γ(t) ≤ 1,

with conditions u(0) = u′(0) = 0. The exact solution to this problem is u(t) = t3. Regarding the proposed method
explained in the previous section, we listed the absolute error for diverse values of K, ν(t), and γ(t) in Table 1. This
table demonstrates that by increasing the number of divisions of the interval [0, 1], the approximate solution becomes
more accurate.

Example 7.2. Consider the following nonlinear multi-term variable-order fractional differential equation [12]:

D
γ(t)
t u(t)− 6D

ν(t)
t u(t)u(t)− 7u′(t) + 5u(t) = f(t), 1 < ν(t) ≤ 2, 0 < γ(t) ≤ 1,

where

f(t) = −150

(
2

Γ(3− ν(t))
t2−ν(t)

)
(3t+ t2) +

15

Γ(2− γ(t))
t1−γ(t)

+
10

Γ(3− γ(t))
t2−γ(t) − 7(15 + 10t) + 25(3t+ t2).

with conditions u(0) = 0 and u′(0) = 15. The exact solution to this problem is u(t) = 5(3t + t2). In view of the

proposed scheme and taking M = K = 2 and γ(t) = 3(sin(t)+cos(t))
5 , we get

u(t) =


−1.8717912557× 10−14t4 + 6.0026619918× 10−15t3 + 5t2 + 15t, 0 ≤ t < 1

2 ,

9.17181561835× 10−15t4 − 2.0485000330× 10−14t3 + 5t2

+15.0000000000000059t− 1.39259154772× 10−15, 1
2 ≤ t < 1.

In addition, the absolute errors for diverse values of ν(t) with M = K = 2 and γ(t) = 3(sin(t)+cos(t))
5 are presented in

Table 2. This table illustrates that the performance of our method is far better compared with the Legendre wavelet
method [12].

Example 7.3. Consider the following multi-term variable-order fractional differential equation [23]:

pD
ν(t)
t u(t) + qD

γ(t)
t u(t) + ru(t) = f(t), 1 < ν(t) ≤ 2, 0 < γ(t) ≤ 1,
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Table 2. The absolute errors for diverse values of ν(t) withM = K = 2 and γ(t) = 3(sin(t)+cos(t))
5 of

Example 7.2.

t Present method Legendre wavelet method [12]
ν(t) = 2 ν(t) = 2− cos2(t) ν(t) = 2

0.2 1.3497× 10−16 1.7147× 10−17 1.199041× 10−14

0.4 6.4057× 10−16 3.3255× 10−14 1.421085× 10−14

0.6 4.4567× 10−16 5.5473× 10−16 2.842171× 10−14

0.8 3.2767× 10−15 1.3024× 10−15 1.669775× 10−13

1 1.1534× 10−14 2.1454× 10−15 2.273737× 10−13

Table 3. Comparison of the absolute error obtained by the presented method, the Legendre wavelet
method [12], and the collocation spectral method [23] with different values of K of Case 1 for Example
7.3.

t Present method Legendre wavelet method [12] Collocation spectral method [23]
M = 2,K = 1 M = 2,K = 2 M = 4, k = 2 n = 2

0.2 4.4145× 10−17 5.9798× 10−17 8.091305× 10−12 2.425319× 10−12

0.4 3.0204× 10−16 1.0580× 10−16 2.024535× 10−9 2.425319× 10−12

0.6 8.4687× 10−16 6.0328× 10−16 9.564669× 10−10 2.425319× 10−12

0.8 1.5984× 10−15 1.0345× 10−14 1.696030× 10−10 2.425319× 10−12

1 2.3232× 10−15 3.2685× 10−14 1.734222× 10−10 2.425319× 10−12

with conditions u(0) = u0, u
′(0) = u1.

Case 1: Let

p = 1, q = −10, r = 1, u0 = 5, u1 = 10, ν(t) =
t+ 2 exp(t)

7
, γ(t) = 1,

and

f(t) = 10

(
t2−ν(t)

Γ(3− ν(t))
+

t1−ν(t)

Γ(2− ν(t))

)
+ 5t2 − 90t− 95.

The exact solution to this problem is u(t) = 5(1 + t)2. By considering the technique described in Section 5 and the
parameters mentioned in Case 1, the absolute errors for different values of K are shown in Table 3. Also, from Table
3, it can be seen that our scheme, in comparison to the Legendre wavelet method [12] and the collocation spectral
method [23], is more accurate.
Case 2: By considering [40]

p = 1, q = 2, r = 4, u0 = u1 = 0, ν(t) = 2, γ(t) = 1,

and

f(t) = 2 + 4t+ 4t2,

the damped mechanical oscillator equation is obtained. The exact solution to this problem is u(t) = t2. The compo-
nents of this equation are defined in Table 4. For M = 2 and K = 1, we get

A = [2, 0, 0].

Then, the approximate solution based on the proposed method is as follows:

u(t) = t2,

which is the exact solution of the problems.
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Table 4. The components of the damped mechanical oscillator equation.

t Time
r Spring stiffness
f(t) External force
p Mass of the particle attached to the spring
q Measure of the strength of the damper
u(t) Displacement of the mass from its rest position

Table 5. Comparison of the maximum absolute error obtained by the presented method and the
methods in [1, 43] with ν(x, t) = 1 and γ(x, t) = 0.8 + 0.005 sin(x) cos(xt) of Example 7.4.

Present method (M1 =M2 = 1)

K = 1 K = 2

L∞-error 1.8423× 10−16 1.0173× 10−15

CPU 3.8059× 10−1 2.1266
Method in [1]

N = M θ1 = ϑ1 = 1
2 , θ2 = ϑ2 = 0 θ1 = ϑ1 = 1

2 , θ2 = ϑ2 = 1
2

6 1.249× 10−16 2.9143× 10−16

10 9.5314× 10−17 1.4898× 10−16

Method in [43]

h = τ 1
200

1
400

L∞-error 2.5613× 10−3 1.2781× 10−3

Example 7.4. Consider the VO-fractional mobile-immobile advection-dispersion equation in the following form [1, 43]:

D
ν(x,t)
t u(x, t) +D

γ(x,t)
t u(x, t) =

∂2u(x, t)

∂x2
− ∂u(x, t)

∂x
− 5(x− 1)x

t1−γ(x,t)

Γ(2− γ(x, t))

− 5
(
2xt− 3t+ x2 + x− 3

)
, 0 < ν(x, t), γ(x, t) ≤ 1,

subject to the initial and boundary conditions

u(x, 0) = 5x− 5x2, u(0, t) = u(1, t) = 0, x ∈ [0, 1], t ∈ [0, 1].

The exact solution to this problem in the case when ν(x, t) = 1 is u(x, t) = 5(t+ 1)x(1−x). By applying the proposed
approach with M1 =M2 = K = 1 and ν(x, t) = γ(x, t) = 1, we have

u11 = −10, u12 = −4.948402911835508× 10−16,

u21 = −1.7460985751571553× 10−15, u22 = −1.1708093942297388× 10−15.

Then, the approximate solution is obtained as follows:

u(x, t) = 5x− 5tx2 + 8.1349455915× 10−17tx3 + 5xt+ 6.63834914181× 10−17x2t2

− 2.92702348× 10−16t2x3 − 3.71132565× 10−16t2x− 5x2.

Also, in Table 5, we compare the outcomes of the present method to the methods in [1, 43]. As can be seen in Table
5, the current method with a few terms of basis functions provides good results. Moreover, Figure 2 shows that when
the function of ν(x, t) approaches 1, the approximate solution is close to the analytical solution.
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Figure 2. The absolute error for ν(x, t) = 1 − 0.06 sin(πxt) (left) and ν(x, t) = 1 − 0.02 sin(πxt)
(right) with M1 =M2 = K = 1 and γ(x, t) = 0.8 + 0.005 sin(x) cos(xt) of Example 7.4.

Table 6. Errors and CPU time for different values of ϑ(x, t) and γ(x, t) withM2 = 2 and K = 1 for
Example 7.5.

ϑ(x, t) = 9−x2+t3

120 , γ(x, t) = 15+sin2(xt)
16

M1 = 3 M1 = 5 M1 = 8

L2-error 1.1883× 10−3 1.2796× 10−5 3.0154× 10−10

L∞-error 8.2396× 10−4 1.1395× 10−5 2.4487× 10−10

CPU 4.4182× 10−1 7.2397× 10−1 9.5284× 10−1

ϑ(x, t) = γ(x, t) = 9−sin(xt)
10

M1 = 3 M1 = 5 M1 = 8

L2-error 1.0622× 10−3 1.2226× 10−5 2.9046× 10−10

L∞-error 7.6064× 10−4 1.0594× 10−5 2.4480× 10−10

CPU 4.0886× 10−1 5.0404× 10−1 6.3835× 10−1

Example 7.5. Consider the multi-term VO-fractional cable equation in the following form:

∂u(x, t)

∂t
= D

1−ϑ(x,t)
t

(
∂2u(x, t)

∂x2

)
−D1−γ(x,t)

t u(x, t)

+ 2

(
t+

π2tϑ(x,t)+1

Γ(2 + ϑ(x, t))
+

tγ(x,t)+1

Γ(2 + γ(x, t))

)
sin(πx), 0 < ϑ(x, t), γ(x, t) ≤ 1,

subject to the initial and boundary conditions

u(x, 0) = u(0, t) = u(1, t) = 0, x ∈ [0, 1], t ∈ [0, 1].

The exact solution to this problem is u(x, t) = t2 sin(πx). The results of this problem are presented in Table 6 and
Figure 3. Regarding the method, the L2-error and L∞-error for different values of ϑ(x, t) and γ(x, t) with M2 = 2
and K = 1 are displayed in Table 6. From Table 6, it is clear that the approximate solutions converge to the
exact solution when the number of basis functions M1 is increased. Also, the absolute error and contour plot with
M1 = 5,M2 = 2,K = 1, and ϑ(x, t) = γ(x, t) = 0.5 are demonstrated in Figure 3.
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Figure 3. The absolute error (left) and the contour plot (right) withM1 = 5, M2 = 2, K = 1, and
ϑ(x, t) = γ(x, t) = 0.5 of Example 7.5.

Example 7.6. Consider the VO-fractional nonlinear Galilei invariant advection-diffusion equation in the following
form [2, 14]:

D
ν(x,t)
t u(x, t) +

∂u(x, t)

∂x
= D

1−ϑ(x,t)
t

(
∂2u(x, t)

∂x2

)
+ u(x, t)− (u(x, t))2

+ t exp(t)

(
2 + t3 exp(t)− 2t1+ϑ(x,t)

Γ(2 + ϑ(x, t))

)
,

0 < ν(x, t), ϑ(x, t) ≤ 1,

subject to the initial and boundary conditions

u(x, 0) = 0, u(0, t) = t2, u(1, t) = t2 exp(x), x ∈ [0, 1], t ∈ [0, 1].

The exact solution to this problem in the case when ν(x, t) = 1 is u(x, t) = t2 exp(x).
Case 1: Assume that the VO-fractional derivatives in this example are

ν(x, t) = 1, ϑ(x, t) =
1

300
(10− tx).

According to the parameters defined in this part, we provide the maximum absolute error for diverse values ofM1 in
Table 7. According to the obtained results in this table, it can be understood that the proposed method with a few
terms of basis functions has high accuracy in comparison to methods in [2, 14].

Case 2: Let

ν(x, t) = ν, ϑ(x, t) =
1

100
(exp(−xt)).

In this part, the approximate solution for different values of ν withM1 = 5, M2 = 2, and K = 1 is illustrated in Table
8. Also, Table 8 indicates that when the values of ν approache 1 the approximate solution are close to the analytical
solution. Moreover, the absolute error and the contour plot for M1 = 5, M2 = 2, and K = 1 with ν = 1 are shown
in Figure 4.

Case 3: Suppose that

ν(x, t) = 1, ϑ(x, t) =
1

500
((tx)2 − (sin(tx))3 + (cos(tx))4 + 16).

The absolute error for M1 =M2 = 2 and K = 2 is plotted in Figure 5.
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Table 7. Comparison of the maximum absolute error obtained by the presented method and the
methods in [2, 14] with M2 = 2 and K = 1 of Case 1 for Example 7.6.

Present method
M1 = 2 M1 = 5 M1 = 8

M2 = 2,K = 1 2.3739× 10−5 2.1772× 10−9 3.6008× 10−14

Method in [2]
(α1, β1, α2, β2) M = N = 2 M = N = 5 M = N = 10

(0, 0, 0, 0) 1.36248× 10−3 5.42912× 10−8 2.66454× 10−14

(0.5, 0.5, 0, 0) 1.36248× 10−3 4.08291× 10−8 2.62013× 10−14

(−0.5, 0, 0.5, 0.5) 1.26147× 10−2 7.07546× 10−8 3.57712× 10−14

Method in [14]
ht = h2

x = 1
16 ht = h2

x = 1
64 ht = h2

x = 1
256

− 5.5308× 10−4 1.4567× 10−4 6.1896× 10−5

Table 8. The approximate solution for different values of ν with M1 = 5, M2 = 2, and K = 1 of
Case 2 for Example 7.6.

x = t 0.8 0.85 0.9 0.95 1

0.1 1.14931× 10−2 1.14089× 10−2 1.13083× 10−2 1.11898× 10−2 1.10517× 10−2

0.3 1.26739× 10−1 1.25603× 10−1 1.24353× 10−1 1.22984× 10−1 1.21487× 10−1

0.5 4.26435× 10−1 4.23202× 10−1 4.19755× 10−1 4.16084× 10−1 4.12180× 10−1

0.7 1.00735 1.00255 9.97526× 10−1 9.92255× 10−3 9.86738× 10−1

0.9 0.00538 2.00227 1.99905 1.99576 1.99227
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Figure 4. The absolute error (left) and the contour plot (right) for Case 2 with M1 = 5, M2 = 2,
and K = 1 of Example 7.6.

8. Conclusion

In this work, we have provided the discretization method by means of the Gegenbauer wavelet functions for the
multi-term variable-order fractional partial differential equations. We also introduce an efficient method for calculating
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Figure 5. The absolute error for Case 3 with M1 =M2 = 2 and K = 2 of Example 7.6.

operational matrix that play a major role in the numerical method. Besides, the modified operational matrices elements
are provided explicitly, and this in turn greatly simplifies the process of obtaining approximate solutions. Also, we
have discussed and analyzed the error of the approximate function in Sobolev space. Finally, we have applied the
theory of numerical technique to several examples to affirm the validity of our claim. It is worth mentioning here that
the proposed approach is a powerful tool to produce a reliable approximate solution for the problems with a few terms
of GWFs.
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