تعداد نشریات | 44 |
تعداد شمارهها | 1,323 |
تعداد مقالات | 16,269 |
تعداد مشاهده مقاله | 52,952,174 |
تعداد دریافت فایل اصل مقاله | 15,622,781 |
An accurate finite-difference scheme for the numerical solution of a fractional differential equation | ||
Computational Methods for Differential Equations | ||
مقالات آماده انتشار، پذیرفته شده، انتشار آنلاین از تاریخ 17 مهر 1403 اصل مقاله (1.33 M) | ||
نوع مقاله: Research Paper | ||
شناسه دیجیتال (DOI): 10.22034/cmde.2024.61919.2699 | ||
نویسندگان | ||
Aniruddha Seal؛ Srinivasan Natesan* | ||
Department of Mathematics, Indian Institute of Technology Guwahati, Guwahati - 781039, India. | ||
چکیده | ||
In this article, a steady-state fractional order boundary-value problem is considered with a fractional convection term. The highest-order derivative term involves a mixed-fractional derivative which appears as a combination of a first-order classical derivative and Caputo fractional derivative. We propose an $L1-$scheme over a uniform mesh for the numerical solution of the fractional differential equation. With the help of a properly chosen barrier function, we discuss error analysis and prove that the proposed method converges with almost first-order. The proposed scheme is also applied on a semilinear fractional differential equation. Numerical experiments are presented to validate the proposed method. | ||
کلیدواژهها | ||
Fractional Differential Equation؛ $L1-$method؛ Discrete Comparison Principle؛ Stability؛ Convergence | ||
آمار تعداد مشاهده مقاله: 159 تعداد دریافت فایل اصل مقاله: 189 |