تعداد نشریات | 44 |
تعداد شمارهها | 1,303 |
تعداد مقالات | 16,020 |
تعداد مشاهده مقاله | 52,490,119 |
تعداد دریافت فایل اصل مقاله | 15,217,567 |
Spectral Collocation Algorithm for the Fractional Bratu Equation via Hexic Shifted Chebyshev Polynomials | ||
Computational Methods for Differential Equations | ||
مقالات آماده انتشار، پذیرفته شده، انتشار آنلاین از تاریخ 09 مهر 1403 اصل مقاله (1.27 M) | ||
نوع مقاله: Research Paper | ||
شناسه دیجیتال (DOI): 10.22034/cmde.2024.61045.2621 | ||
نویسندگان | ||
Ahmed Gamal Atta1؛ Jomana Farag Soliman2؛ Elaf Wael Elsaeed2؛ Mostafa Wael Elsaeed2؛ Youssri Hassan Youssri* 3 | ||
1Department of Mathematics, Faculty of Education, Ain Shams University, Roxy, Cairo 11341, Egypt. | ||
2Department of Mathematics, Faculty of Science, Galala University, Egypt. | ||
3Department of Mathematics, Faculty of Science, Cairo University, Giza 12613, Egypt. | ||
چکیده | ||
This paper offers a numerical collocation scheme for solving the fractional nonlinear Bratu differential equation. We obtain a system of nonlinear equations using our spectral collocation method, which we then solve iteratively using Newton's method to obtain an approximate solution. Additionally, numerical comparisons are made between the proposed strategy and several numerical strategies documented in various literatures. The numerical findings verify the accuracy, computational efficiency, and ease of use of the recommended approach. | ||
کلیدواژهها | ||
Chebyshev polynomials؛ Collocation method؛ Bratu differential equation | ||
آمار تعداد مشاهده مقاله: 159 تعداد دریافت فایل اصل مقاله: 170 |