- [1] W. M. Abd-Elhameed, Y. H. Youssri, and A. G. Atta, Tau algorithm for fractional delay differential equations utilizing seventh-kind Chebyshev polynomials, J. Math. Model, (2024), 277–299.
- [2] W. M. Abd-Elhameed and Y. H. Youssri, Sixth-kind Chebyshev spectral approach for solving fractional differential equations, Int. J. Nonlinear Sci. Numer. Simul., 20(2) (2019), 191–203.
- [3] W. M. Abd-Elhameed, Y. H. Youssri, and A. G. Atta, Adopted spectral tau approach for the time-fractional diffusion equation via seventh-kind Chebyshev polynomials, Boundary Value Probl., 2024(1) (2024), 1–24.
- [4] A. M. Al-Bugami, M. A. Abdou, and A. Mahdy, Sixth-kind Chebyshev and Bernoulli polynomial numerical methods for solving nonlinear mixed partial integrodifferential equations with continuous kernels, J. Funct. Spaces, (2023).
- [5] A. G. Atta, W. M. Abd-Elhameed, G. M. Moatimid, and Y. H. Youssri, A fast Galerkin approach for solving the fractional Rayleigh–Stokes problem via sixth-kind Chebyshev polynomials, Math., 10(11) (2022), 1843.
- [6] A. G. Atta, W. M. Abd-Elhameed, G. M. Moatimid, and Y. H. Youssri, Advanced shifted sixth-kind Chebyshev tau approach for solving linear one-dimensional hyperbolic telegraph type problem, Math. Sci., 17(4) (2023), 415–429.
- [7] A. G. Atta, Spectral collocation approach with shifted Chebyshev third-kind series approximation for nonlinear generalized fractional Riccati equation, Int. J. Appl. Comput. Math., 10(2) (2024), 59.
- [8] S. Aydınlık and A. Kırı¸s, An efficient method for solving fractional integral and differential equations of Bratu type, TWMS J. Appl. Eng. Math., (2024).
- [9] M. Bisheh-Niasar, A. Saadatmandi, and M. Akrami-Arani, A new family of high-order difference schemes for the solution of second order boundary value problems, Iran. J. Math. Chem., 9(3) (2018), 187–199.
- [10] V. P. Dubey, R. Kumar, and D. Kumar, Analytical study of fractional Bratu-type equation arising in electro-spun organic nanofibers elaboration, Physica A: Stat. Mech. Appl., 521 (2019), 762–772.
- [11] A. Ebrahimzadeh, R. Khanduzi, and Z. Ebrahimzadeh, Coupling Chebyshev Collocation with TLBO to Optimal Control Problem of Reservoir Sedimentation: A Case Study on Golestan Dam, Gonbad Kavous City, Iran, Math. Interdisc. Res., 8(2) (2023), 141–159.
- [12] H. Jafari and H. Tajadodi, Electro-spun organic nanofibers elaboration process investigations using BPs operational matrices, Math. Interdisc. Res., 7(1) (2016), 19–27.
- [13] A. Khalouta and A. Kadem, Solution of the fractional Bratu-type equation via fractional residual power series method, Tatra Mt. Math. Publ., 76(1) (2020), 127–142.
- [14] A. Khalouta, A novel representation of numerical solution for fractional Bratu-type equation, Adv. Stud. EuroTbilisi Math. J., 15(1) (2022), 93–109.
- [15] M. Masjed-Jamei, Some new classes of orthogonal polynomials and special functions, University of Kassel, 2006.
- [16] M. Moustafa, Y. H. Youssri, and A. G. Atta, Explicit Chebyshev Galerkin scheme for the time-fractional diffusion equation, Int. J. Mod. Phys. C. (IJMPC), 35(01) (2024), 1–15.
- [17] O. Odetunde, A. Ajanı, A. Taıwo, and S. Onıtılo, Numerical solution of Bratu-type initial value problems by Aboodh Adomian decomposition method, Cankaya Univ. J. Sci. Eng., 20(2) (2023), 64–75.
- [18] P. Pirmohabbati, A. H. Refahi Sheikhani, and A. Abdolahzadeh Ziabari, Numerical solution of nonlinear fractional Bratu equation with hybrid method, Int. J. Appl. Comput. Math., 6 (2020), 1–22.
- [19] I. Podlubny, Fractional differential equations: An introduction to fractional derivatives, fractional differential equations, to methods of their solution and some of their applications, Elsevier, 1998.
- [20] M. A. Z. Raja and S. U. I. Ahmad, Numerical treatment for solving one-dimensional Bratu problem using neural networks, Neural Comput. Appl., 24(3) (2014), 549–561.
- [21] K. Sadri, D. Amilo, K. Hosseini, E. Hin¸cal, and A. R. Seadawy, A Tau-Gegenbauer spectral approach for systems of fractional integro-differential equations with the error analysis, AIMS Math., 9(2) (2024), 3850–3880.
- [22] S. M. Sayed, A. S. Mohamed, E. M. Abo-Eldahab, and Y. H. Youssri, A compact combination of second-kind Chebyshev polynomials for Robin boundary value problems and Bratu-type equations, J.Umm Al-Qura Univ. Appl. Sci., (2024).
- [23] J. Shen, T. Tang, and L. Wang, Spectral methods: algorithms, analysis and applications, Springer Science & Business Media, 2011.
- [24] H. Singh, A. K. Singh, R. K. Pandey, D. Kumar, and J. Singh, An efficient computational approach for fractional Bratu’s equation arising in electrospinning process, Math. Methods Appl. Sci., 44(13) (2021), 10225–10238.
- [25] G. O. Theophilus, A. G. Olusegun, and M. Umaru, K-step block hybrid Nystr¨om-type method for the solution of Bratu problem with impedance boundary condition, Cent. Asian J. Math. Theory Comput. Sci., 5(1) (2024), 34–46.
- [26] N. S. Yakusak and E. O. Taiwo, Approximate solution of Bratu differential equation using Falker-type method, Scholar J., 2(1) (2024).
- [27] Y. H. Youssri and A. G. Atta, Fej´er-quadrature collocation algorithm for solving fractional integro-differential equations via Fibonacci polynomials, Contemp. Math., (2024), 296–308.
- [28] F. Yin and Y. Fu, Explicit high accuracy energy-preserving Lie-group sine pseudo-spectral methods for the coupled nonlinear Schrodinger equation, Appl. Numer. Math., 195 (2024), 1–16.
- [29] X. Zhao, L. L. Wang, and Z. Xie, Sharp error bounds for Jacobi expansions and Gegenbauer–Gauss quadrature of analytic functions, SIAM J. Numer. Anal., 51(3) (2013), 1443–1469.
- [30] W. Zheng, Y. Chen, and J. Zhou, A Legendre spectral method for multidimensional partial Volterra integrodifferential equations, J. Comput. Appl. Math., 436 (2024), 115302.
|