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Abstract

This paper offers a numerical collocation scheme for solving the fractional nonlinear Bratu differential equation.

We obtain a system of nonlinear equations using our spectral collocation method, which we then solve iteratively
using Newton’s method to obtain an approximate solution. Additionally, numerical comparisons are made between

the proposed strategy and several numerical strategies documented in various literatures. The numerical findings

verify the accuracy, computational efficiency, and ease of use of the recommended approach.
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1. Introduction

Numerical spectral methods are among the most widely used numerical approaches developed and adjusted to solve
differential equations with particular numerical values. The basic idea underlying these methods is to use a truncated
series of basis functions, usually orthogonal polynomials like ultraspherical, Chebyshev, Legendre, or other linearly
independent polynomials, to represent the unknown solution of the differential equation. The main benefit of these
methods is that they can yield findings with a reasonable degree of accuracy with a comparatively smaller number
of degrees of freedom. A significant amount of research addressing all three kinds of spectral techniques has been
conducted recently. For example, the author in [7] provided a spectral collocation approach to handle the nonlinear
generalized fractional Riccati equation. A novel spectral Tau approach to fractional delay differential equations was
developed in [1]. Furthermore, a Galerkin algorithm is used in [16] to solve the time-fractional diffusion equation. For
further studies, see [11, 21, 27, 28, 30].

The Bratu differential equation is a second-order nonlinear ordinary differential equation in mathematical physics
that arises from the study of boundary value problems. The Bratu equation is highly nonlinear due to its exponential
component. It is widely used to describe a wide range of physical processes, including the buckling of elastic plates
and the propagation of flames in combustion theory. Due to the difficulty of obtaining its analytical solutions, most
solutions are estimated using numerical methods. The Bratu issue can be solved numerically using various techniques,
including iterative, shooting, and finite difference approaches.

In mathematical physics, the Bratu differential equation is a second-order nonlinear ordinary differential equation
that arises from the study of boundary value problems. Because of its exponential component, the Bratu equation
is extremely nonlinear. It is frequently employed to explain a broad variety of physical phenomena, such as the
spreading of flames in combustion theory and the buckling of elastic plates. Due to the difficulty of obtaining its
analytical solutions, there have been many attempts to solve this problem. For example, the author in [8] presented an
efficient method for solving fractional integral and differential equations of Bratu type. In [26], the authors proposed an
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approximate solution of the Bratu differential equation using the Falker-type method. In [25], the authors proposed a
K-step block hybrid Nyström-type method for the solution of the Bratu problem with impedance boundary conditions.
For further work on Bratu’s problem, the interested reader can refer to the following works: [10, 13, 14, 18, 22, 24].

Orthogonal polynomials have recently attracted new interest for their use in spectral approaches. The first, second,
third, and fourth varieties of Chebyshev polynomials, in particular, have been crucial to the development of spectral
approaches for PDEs. The accurate representation of smooth functions provided by the finite Chebyshev expansion is
one benefit of utilizing Chebyshev polynomials. Furthermore, as m goes to infinity, the coefficients in the Chebyshev
expansion approach zero faster than any inverse power in m. Masjed-Jamei introduced Chebyshev polynomials of the
fifth and sixth sorts in his PhD thesis [15] in 2006. Many researchers have given these polynomials a great deal of
attention. For example, the authors in [5] solved the fractional Rayleigh–Stokes problem via sixth-kind Chebyshev
polynomials. In [4], the authors solved the nonlinear mixed partial integro-differential equations with continuous
kernels to solve the reaction-diffusion-convection problem using sixth-kind Chebyshev polynomials. In [3], the authors
solved the time-fractional diffusion equation using seventh-kind Chebyshev polynomials.

We point out here that the novelty of our contribution to this paper can be summarized as follows:

• Some specific integer and fractional derivatives of the shifted sixth-kind Chebyshev polynomials are expressed
in terms of their original ones.
• Constructing theoretical background concerning these polynomials. More precisely, the fundamental formulas

of these formulas, such as their analytics inversion, integer derivatives, and fractional derivatives of the formu-
las, are established. These formulas will be the backbone of applying various numerical methods to different
DEs.
• Introducing new method based on collocation method to solve fractional Bratu equation.
• analyzeing in detail the error bound of this method.

To the best of our knowledge, the contributions using the sixth-kind Chebyshev polynomials are few in numerical
analysis. We also refer to the approach followed, which has many advantages since by choosing shifted sixth-kind
Chebyshev polynomials as basis functions a few terms of the retained modes, it is possible to produce approximations
with excellent precision. Less calculation is required, and the resulting errors are small. We also note here that the
presented collocation algorithm for treating the fractional Bratu equation is new, which motivates us to analyze it.

1.1. Properties of the hexic Chebyshev polynomials. The hexic (sixth)-kind Chebyshev polynomials Yj(ξ),
j ≥ 0 are a sequence of orthogonal polynomials defined on [−1, 1], that can be easily generated with the aid of the
following recurrence relation:

Yi(ξ) = ξ Yi−1(ξ)− αi Yi−2(ξ), Y0(ξ) = 1, Y1(ξ) = ξ, i ≥ 2, (1.1)

αi =
i (i+ 1) + (−1)i (2 i+ 1) + 1

4 i (i+ 1)
. (1.2)

These polynomials satisfy the orthogonality formula ([2]):

1∫
−1

√
1− ξ2 ξ2 Yi(ξ)Yj(ξ) dξ = hi δi,j , (1.3)

where

hi =
π

22 i+3

{
1, if i even,
i+3
i+1 , if i odd,

(1.4)

and

δi,j =

{
1, if i = j,

0, if i 6= j.
(1.5)
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The shifted orthogonal Chebyshev polynomials of the sixth-kind Ci(ξ) are defined on [0, 1] as

Ci(ξ) = Yi (2 ξ − 1) . (1.6)

Ci(ξ) can be generated with the aid of the following recursive formula:

Ci(ξ) = (2 ξ − 1) Ci−1(ξ)− αi Ci−2(ξ), C0(ξ) = 1, C1(ξ) = 2 ξ − 1, i ≥ 2, (1.7)

where αi is defined in (1.2).
The orthogonality relation of Ci(ξ) on [0, 1] is given by:∫ 1

0

ω Ci(ξ)Cj(ξ) dξ = h̄i δi,j , (1.8)

where

ω = (2 ξ − 1)2
√
ξ − ξ2, (1.9)

and

h̄i =
1

4
hi. (1.10)

The analytic formula of Cj(ξ) is [2]

Cj(ξ) =

j∑
`=0

B`,j ξ
`, (1.11)

where

B`,j =
22`−j

(2`+ 1)!



b j2 c∑
k=b `+1

2 c

(−1)
j
2 +k+`(2k + `+ 1)!

(2k − `)!
, if j even,

2

j + 1

b j−1
2 c∑

k=b `2 c

(−1)
j+1

2 +k+`(k + 1)(2k + `+ 2)!

(2k − `+ 1)!
, if j odd.

(1.12)

The inversion formula Cj(ξ) is [2]

ξj =

j∑
m=0

Qm,j Cm(ξ), (1.13)

where

Qm,j =
(2j + 1)!2m−2j+2

(j −m)!(m+ j + 4)!

(m+ 2)
(
m(m+ 4) + j2 + j + 3

)
, if m even,

(m+ 1)(m(m+ 4) + j(j + 3) + 6), if m odd.
(1.14)

Corollary 1.1. Let m ≥ 2. The second-order derivative of the polynomials Cm(ξ) can be expressed explicitly as [6]:

D2 Cm(ξ) =
m−2∑
`=0

λ`,m C`(ξ), (1.15)
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where

λ`,m = 22−m+`



(2 + `)(−8 +m(4 +m)− `(4 + `)), if m even and m−`−2
2 even,

(m− `)(2 + `)(4 +m+ `), if m even and m−`−4
2 even,

(1 + `)(4 +m+ `)
(
−4 + 2m+m2 − (2 +m)`

)
1 +m

, if m odd and m−`−2
2 even,

(m− `)(1 + `)(2(2 + `) +m(6 +m+ `))

1 +m
, if m odd and m−`−4

2 even,

0, otherwise.

2. Collocation scheme for the fractional Bratu equation

Consider the following fractional Bratu equation [17, 20]:

Dαυ + λ eυ = 0; 1 < α ≤ 2, (2.1)

subject to the initial conditions:

υ(0) = a1, υ′(0) = a2, (2.2)

or the boundary conditions:

υ(0) = a1, υ(1) = a3, (2.3)

where λ, is a given real parameter, and a1, a2 and a3 are constants. Also, Dα is the fractional-order derivative in
Caputo sense [19]

Dαh(ξ) =
1

Γ(m− α)

∫ ξ

0

(ξ − y)m−α−1h(m)(y)dy, α > 0, ξ > 0, (2.4)

where

m− 1 < α < m, m ∈ N.
The collection of Ci form an orthogonal basis of L2

ω(ξ)(0, 1). And so, for any given function υ(ξ) ∈ L2
ω(0, 1), one has

υ(ξ) =
∞∑
i=0

υ̂i Ci(ξ), (2.5)

and approximated as

υ(ξ) ≈ υN (ξ) =
N∑
i=0

υ̂i Ci(ξ). (2.6)

Therefore, we can write the residual R(ξ) of Eq. (2.1) as

R(ξ) = DαυN + λ eυN . (2.7)

Now, we will solve the Bratu Equation (2.1) for the cases corresponding to α = 2 and 1 < α < 2.
Case 1: At α = 2.
By virtue of Corollary 1.1 along with the expansion (2.6), R(ξ) may be rewritten as

R(ξ) = D2υN + λ eυN

=

N∑
i=0

υ̂iD
2 Ci(ξ) + λ e

∑N
i=0 υ̂i Ci(ξ)

=

N∑
i=0

i−2∑
p=0

υ̂i λp,i Cp(ξ) + λ e
∑N
i=0 υ̂i Ci(ξ),

(2.8)
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Moreover, we get the following initial conditions

N∑
i=0

υ̂i Ci(0) = a1,

N∑
i=0

υ̂i
dCi(0)

d ξ
= a2,

(2.9)

or the boundary conditions

N∑
i=0

υ̂i Ci(0) = a1,

N∑
i=0

υ̂i Ci(1) = a3,

(2.10)

Now, the application of collocation method enables us to write

R(ξr) = 0, r = 1, 2, ..., N − 1, (2.11)

which can be rewritten as
N∑
i=0

i−2∑
p=0

υ̂i λp,i Cp(ξr) + λ e
∑N
i=0 υ̂i Ci(ξr) = 0, r = 1, 2, ..., N − 1, (2.12)

the set {ξr : r = 1, 2, ..., N − 1} represents the first (N − 1) distinct roots of Ci(ξ). Consequently, Eq. (2.12), coupled
with either the initial conditions (2.9) or the boundary conditions (2.10), forms a system of (N + 1) equations. This
system can be effectively solved using Newton’s iterative method to determine the unknown expansion coefficients υ̂i.
Case 2: At 1 < α < 2.
Now, in order to derive our proposed method when 1 < α < 2, it is required to express the fractional derivative of the
basis Cj(ξ) in terms of the polynomials Ck(ξ).

Theorem 2.1. The following formula holds for 1 < α < 2

DαCj(ξ) =
N∑
k=0

ζk,r,j,α Ck(ξ), (2.13)

where

ζk,r,j,α =

j∑
r=2

r!Br,j ρk,r,α
Γ(r + 1− α)

. (2.14)

Proof. From Eq. (1.11), we have

Cj(ξ) =

j∑
r=0

Br,j ξ
r. (2.15)

Using the following property of fractional Caputo derivative [19]

Dα ξr =

{
0, if r ∈ N0 and r < dαe,

r!
Γ(r−α+1) ξ

r−α, if r ∈ N0 and r ≥ dαe,
(2.16)

where N0 = {0, 1, 2, . . .}, and dαe is the ceiling function, yields

DαCj(ξ) =

j∑
r=2

Br,j
r!

Γ(r + 1− α)
ξr−α. (2.17)
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Now, ξr−α is approximated in terms of Ck(ξ) as

ξr−α ≈
N∑
k=0

ρk,r,α Ck(ξ). (2.18)

To find ρk,r,α. Based on the orthogonality relation of Ck(ξ) in (1.8), we get

ρk,r,α =
1

h̄k

∫ 1

0

ξr−α Ck(ξ)ω dξ

=
1

h̄k

k∑
m=0

Bm,k

∫ 1

0

ξr+m−α (2 ξ − 1)2
√
ξ − ξ2 dξ

=
1

h̄k

k∑
m=0

Bm,k

∫ 1

0

(
4 ξr+m−α+ 5

2 + ξr+m−α+ 1
2 − 4 ξr+m−α+ 3

2

) √
1− ξ dξ

=
1

h̄k

k∑
m=0

Bm,k

[
4β

(
(r +m− α+

7

2
,

3

2

)
+ β

(
(r +m− α+

3

2
,

3

2

)
− 4β

(
(r +m− α+

5

2
,

3

2

)]
,

(2.19)

where β(., .) is the well-known beta function.
Now, inserting Eq. (2.18) into Eq. (2.17), we get the desired result of Theorem 2.1. �

Now, using Theorem 2.1 along with the expansion (2.6), the residual R(ξ) of Eq. (2.1) is given by

R(ξ) = DαυN + λ eυN

=

N∑
i=0

υ̂iD
α Ci(ξ) + λ e

∑N
i=0 υ̂i Ci(ξ)

=

N∑
i=0

N∑
k=0

υ̂i ζk,r,i,α Ck(ξ) + λ e
∑N
i=0 υ̂i Ci(ξ),

(2.20)

Now, the application of collocation method enables us to write

R(ξr) = 0, r = 1, 2, ..., N − 1, (2.21)

that can be rewritten as

N∑
i=0

N∑
k=0

υ̂i ζk,r,i,α Ck(ξr) + λ e
∑N
i=0 υ̂i Ci(ξr) = 0, r = 1, 2, ..., N − 1, (2.22)

where {ξr : r = 1, 2, ..., N −1} are the first (N −1) distinct roots of Ci(ξ). And hence, Eq. (2.22) along with the initial
conditions (2.9) or the boundary conditions (2.10), consist (N + 1) system of equations that can be solved with the
aid of the well-known Newton’s iterative method to get the unknown expansion coefficients υ̂i.

Remark 2.2. The following algorithm summarizes the main steps for solving the fractional Bratu equation

3. Error bound

Comparing the numerical solution υN with an acceptable orthogonal projection πNυ of the analytic solution υ in
a suitable Sobolev space with the norm ||.||S and applying the triangle inequality is a standard approach in error
analysis.

||υ − υN ||S ≤ ||υ − πNυ||S + ||πNυ − υN ||S . (3.1)
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Algorithm 1 Coding algorithm for the proposed scheme.

Input α, N, λ, a1, a2 and a3.
Step 1. Assume an approximate solution υN (ξ) as in (2.6).
Step 2. Compute R(ξ) as in (2.8) for the case α = 2 or (2.20) for the case 1 < α < 2.
Step 3. Apply the collocation method to obtain Eq. (2.12) for the case α = 2 or Eq. (2.22) for the case

1 < α < 2 along with the initial conditions (2.9) or the boundary conditions (2.10) .
Step 4. Use FindRoot command with initial guess {υ̂i = 10−i, i : 0, 1, ..., N}, to solve the system resulting

from Eq. (2.12) or Eq. (2.22) along with the initial conditions (2.9) or the boundary conditions
(2.10) to get υ̂i.

Output υN (ξ)

Hence, the error estimate ||υ − πNυ||S will be the main concern of this section.
Let πN : L2

ω → PN be the L2
ω-orthogonal projection operator defined as follows

(υ − πNυ, υN )ω = 0, ∀υN ∈ PN , (3.2)

where PN = {C0(t), C1(t), C2(t), . . . , CN (t)}. Therefore, we have

||υ − πNυ||ω = inf
υN∈PN

||υ − uN ||ω. (3.3)

Assume that the following Chebyshev-weighted Sobolev space

Hm
ω (I) = {υ : Dα+k υ ∈ L2

ω(I), 0 ≤ k ≤ m}, (3.4)

where I = (0, 1), equipped with the inner product, norm, and semi-norm

(υ, u)Hm
ω

=

m∑
k=0

(Dα+k υ,Dα+k u)L2
ω
,

||υ||2Hm
ω

= (υ, υ)Hm
ω
, |υ|Hm

ω
= ||Dα+m υ||L2

ω
,

(3.5)

where 0 < α < 1 and m ∈ N.

Lemma 3.1. [29] For n ≥ 1, n+ r > 1 and n+ s > 1, where r, s, are any constants, we have

Γ(n+ r)

Γ(n+ s)
≤ or,sn nr−s, (3.6)

where

or,sn = exp

(
r − s

2 (n+ s− 1)
+

1

12 (n+ r − 1)
+

(r − s)2

n

)
. (3.7)

Remark 3.2. or,sn can be expressed as follows for fixed r, s:

or,sn = 1 +O(n−1).

Theorem 3.3. Suppose 1 < α < 2, πNυ is the orthogonal projection approximation of υ ∈ Hm
ω (I). Then for 0 ≤ k ≤

m ≤ N + 1, where m ∈ N, we get

||Dα+k (υ − πNυ)||L2
ω
. N−

7
4 (m−k) |υ|2Hm

ω
, (3.8)

where A . B indicates the existence of a constant ν such that A ≤ ν B.
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Proof. Based on the definitions of υ =
∑∞
i=0 υ̂i Ci(ξ) and πNυ =

∑N
i=0 υ̂i Ci(ξ), we can write

||Dα+k (υ − πNυ)||2L2
ω

=
∞∑

n=N+1

|cn|2 ||Dα+k Cn(ξ)||2L2
ω

=
∞∑

n=N+1

|cn|2
||Dα+k Cn(ξ)||2L2

ω

||Dα+m Cn(ξ)||2L2
ω

||Dα+m Cn(ξ)||2L2
ω

≤
||Dα+k CN+1(ξ)||2L2

ω

||Dα+m CN+1(ξ)||2L2
ω

|υ|2Hm
ω
.

(3.9)

To estimate the factor
||Dα+k CN+1(ξ)||2

L2
ω

||Dα+m CN+1(ξ)||2
L2
ω

, we firstly find ||Dα+k CN+1(ξ)||2
L2
ω̆
.

||Dα+k CN+1(ξ)||2L2
ω

=

∫ 1

0

Dα+k CN+1(ξ)Dα+k CN+1(ξ)ω d ξ. (3.10)

Eq. (1.11), along with the fractional derivative operator (2.4) allows us to write

||Dα+k CN+1(ξ)||2L2
ω

=
N+1∑
p=k+2

N+1∑
i=k+2

Bp,N+1Bi,N+1

×
(

p! i!

Γ(p− k − α+ 1) Γ(i− k − α+ 1)

∫ 1

0

ξp+i−2 k−2α (2 ξ − 1)2
√
ξ − ξ2 d ξ

)
=

N+1∑
p=k+2

N+1∑
i=k+2

Bp,N+1Bi,N+1

×

(√
π i! p!

(
4α2 − 2α(2 i− 4 k + 2 p+ 1) + (i− 2 k + p)2 + i− 2 k + p+ 3

)
Γ
(
i+ p− 2 k − 2α+ 3

2

)
2 Γ(i− k − α+ 1)Γ(p− k − α+ 1)Γ(i+ p− 2 k +−2α+ 5)

)
.

(3.11)

The following inequality can be obtained after applying the Stirling formula [23]

i! p! Γ
(
i+ p− 2 k − 2α+ 3

2

)
2 Γ(i− k − α+ 1)Γ(p− k − α+ 1)Γ(i+ p− 2 k +−2α+ 5)

. pk+α ik+α (i+ p− 2 k − 2α)−
7
2 . (3.12)

By virtue of Stirling formula and Lemma 3.1, ||Dα+k CN+1(ξ)||2L2
ω

can be written as

||Dα+k CN+1(ξ)||2L2
ω
.λ1

∗ λ2
∗ (N + 1)2 (k+α) (N − k − α+ 1)−

7
2

N+1∑
p=k+2

N+1∑
i=k+2

1

= λ1
∗ λ2

∗ (N + 1)2 (k+α) (N − k − α+ 1)−
7
2 (N − k)2

= λ1
∗ λ2

∗
(

Γ(N + 2)

Γ(N + 1)

)2 (k+α) (
Γ(N + 2− k − α)

Γ(N + 1− k − α)

)− 7
2
(

Γ(N − k + 1)

Γ(N − k)

)2

. λ1
∗ λ2

∗N2 (k+α) (N − k)−
3
2 ,

(3.13)

where λ1
∗ = max0≤p≤N+1 {Bp,N+1} and λ2

∗ = max0≤i≤N+1 {Bi,N+1} .
Similarly, we have

||Dα+m CN+1(ξ)||2L2
ω
. λ1

∗ λ2
∗N2 (m+α) (N −m)−

3
2 (3.14)
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Hence,

||Dα+k φaN+1(ξ)||2L2
ω

||Dα+m φaN+1(ξ)||L2
ω

. N2 (k−m)

(
N − k
N −m

)− 3
2

. N2 (k−m)

(
Γ(N − k + 1)

Γ(N −m+ 1)

)− 3
2

. N−
7
2 (m−k).

(3.15)

Inserting Eq. (3.15) into Eq. (3.18), one has

||Dα+k (υ − πNυ)||2L2
ω
. N−

7
2 (m−k) |υ|2Hm

ω
. (3.16)

Therefore, we get the desired result. �

Theorem 3.4. Assume that πNυ is the orthogonal projection approximation of υ ∈ Hm
ω (I), when α = 0. Then for

0 ≤ k ≤ m ≤ N + 1, where m ∈ N, we get

||Dk (υ − πNυ)||L2
ω
. N−

7
4 (m−k) ||Dm υ||L2

ω
, (3.17)

Proof. The definitions of υ and πNυ enable us to write

||Dk (υ − πNυ)||2L2
ω

=
∞∑

n=N+1

|cn|2 ||Dk Cn(ξ)||2L2
ω

=

∞∑
n=N+1

|cn|2
||Dk Cn(ξ)||2L2

ω

||Dm Cn(ξ)||2L2
ω

||Dm Cn(ξ)||2L2
ω

≤
||Dk CN+1(ξ)||2L2

ω

||Dm CN+1(ξ)||2L2
ω

||Dm υ||L2
ω
.

(3.18)

Now, imitating similar steps as in Theorem 3.3, we get the desired result. �

Theorem 3.5. Let R(ξ) be the residual of Eq. (2.1), that defined as

R(ξ) = DαπNυ + λ eπNυ, (3.19)

then ||R(ξ)||L2
ω
→ 0 as N →∞.

Proof. Subtracting Eq. (3.19) from Eq. (2.1), we get

R(ξ) =Dα(υ − πNυ) + λ [eυ − eπNυ]

= Dα(υ − πNυ) + λ

[
(υ − πNυ) +

(υ2 − πNυ2)

2
+

(υ3 − πNυ3)

6
+ .......

]
(3.20)

Now, taking ||.||L2
ω

for the last equation to get

||R(ξ)||L2
ω

=

∣∣∣∣∣∣∣∣Dα(υ − πNυ) + λ

[
(υ − πNυ) +

(υ2 − πNυ2)

2
+

(υ3 − πNξ3)

6
+ .......

]∣∣∣∣∣∣∣∣
L2
ω

≤ ||Dα(υ − πNυ)||L2
ω

+ λ ||(υ − πNυ)||L2
ω

+
λ

2
||(υ − πNυ)||L2

ω
||(υ + πNυ)||L2

ω
+ .......

(3.21)

Now, the application of Theorems 3.3 and 3.4 enables us to write the last equation as

||R(ξ)||L2
ω
. N−

7
4 (m−k) |υ|2Hm

ω̆
+ λN−

7
4 (m−k) ||Dm υ||L2

ω̆

+
λ

2
N−

7
4 (m−k) ||Dm υ||L2

ω̆
||(υ + πNυ)||L2

ω
+ .......

(3.22)
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Table 1. Maximum absolute errors of Example 4.1.

N 5 10 15 20 25 30
Error 2.13113×10−3 1.06576×10−5 2.38942×10−9 1.3225×10−11 7.03881×10−14 3.53051×10−14

Table 2. Comparison of absolute errors for Example 4.1.

t Our method Method in [17]
0 3.80699×10−17 0

0.1 7.28584×10−17 1.4×10−10

0.2 3.46945×10−17 3.499×10−8

0.3 1.11022×10−16 9.1185×10−7

0.4 8.32667×10−17 9.3271×10−6

0.5 1.11022×10−16 5.73698×10−5

0.6 5.55112×10−17 2.567388×10−4

0.7 1.11022×10−16 9.260041×10−4

0.8 1.33227×10−15 2.8639825×10−3

0.9 8.99281×10−15 7.9152872×10−3

1 3.53051×10−14 2.014183×10−3

Or

||R(ξ)||L2
ω
. N−

7
4 (m−k) ||Dm υ||L2

ω̆
+ λN−

7
4 (m−k) ||Dm υ||L2

ω̆

+
λ

2
N−

7
4 (m−k) ||Dm υ||L2

ω̆
||(υ + πNυ)||L2

ω
+ .......

(3.23)

Therefore, it is clear that ||R(ξ)||L2
ω
→ 0 as N →∞. �

4. Illustrative examples

Example 4.1. [17] Consider the following equation

Dαυ − 2 eυ = 0; 0 ≤ t ≤ 1, (4.1)

subject to the initial conditions:

υ(0) = υ′(0) = 0, (4.2)

where the exact solution is υ(t) = −2 ln(cos(t)) at α = 2.
Table 1 shows the maximum absolute errors at different values of N . Table 2 presents a comparison of absolute errors
between our method and method in [17]. Figure 1 illustrates the absolute errors at different values of N . Also, Figure
2 shows that the approximate solutions have smaller variations for values of α near the value α = 2 when N = 10.
These results prove that the approximate solution is quite near to the analytic one.

Example 4.2. [17] Consider the following equation

Dαυ − π2 eυ = 0; 0 ≤ t ≤ 1, (4.3)

subject to the initial conditions:

υ(0) = υ′(0) = 0, (4.4)

where the exact solution is υ(t) = − log(1− cos(π(t+ 0.5))) at α = 2.
Table 3 shows the maximum absolute errors at different values of N . Figure 3 illustrates the absolute errors at different
values of N . Also, Figure 4 shows that the approximate solutions have smaller variations for values of α near the value
α = 2 when N = 10. These results prove that the approximate solution is quite near to the analytic one.



Unco
rre

cte
d Pro

of

CMDE Vol. *, No. *, *, pp. 1-15 11

N=24

0.0 0.2 0.4 0.6 0.8 1.0

0

5.×10-14

1.×10-13

1.5×10-13

t

E
rr
o
r

N=26

0.0 0.2 0.4 0.6 0.8 1.0

0

5.×10-15

1.×10-14

1.5×10-14

2.×10-14

2.5×10-14

3.×10-14

t

E
rr
o
r

N=28

0.0 0.2 0.4 0.6 0.8 1.0

0

1.×10-15

2.×10-15

3.×10-15

4.×10-15

t

E
rr
o
r

N=30

0.0 0.2 0.4 0.6 0.8 1.0

0

1.×10-15

2.×10-15

3.×10-15

4.×10-15

5.×10-15

6.×10-15

t

E
rr
o
r

Figure 1. The absolute errors of Example 4.1 at different values of N .
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=1.92

=1.88

=1.82

Figure 2. Different solutions of Example 4.1.

Table 3. Maximum absolute errors of Example 4.2.

N 5 10 15 20 25 30
Error 1.68343×10−2 4.16448×10−5 1.77073×10−8 1.86694×10−10 3.39311×10−13 5.80534×10−13

Example 4.3. [20] Consider the following equation

Dαυ + eυ = 0; 0 ≤ t ≤ 1, (4.5)

subject to the boundary conditions:

υ(0) = υ(1) = 0, (4.6)

where the exact solution is υ(t) = −2 log

(
cosh( θ2 (t− 1

2 ))
cosh( θ4 )

)
at θ = 2.3576 when α = 2.

Table 4 shows the maximum absolute errors at different values of N . Figure 5 illustrates the absolute errors at different
values of N . Also, Figure 6 shows that the approximate solutions have smaller variations for values of α near the value
α = 2 when N = 10. These results prove that the approximate solution is quite near to the analytic one.
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Figure 3. The absolute errors of Example 4.2 at different values of N .
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Figure 4. Different solutions of Example 4.2.

Table 4. Maximum absolute errors of Example 4.3.

N 4 9 14 19 24
Error 2.58482×10−3 5.41337×10−7 3.29419×10−10 4.18554×10−14 4.66184×10−16

Table 5. Comparison of absolute errors for Example 4.3.

t Our method Method in [20]
0.1 1.24911×10−16 6.2868×10−10

0.3 5.55112×10−17 1.2860×10−8

0.5 5.55112×10−17 3.4980×10−10

0.7 1.11022×10−16 1.7153×10−9

0.9 1.80411×10−16 6.9360×10−10
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Figure 5. The absolute errors of Example 4.3 at different values of N .
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Figure 6. Different solutions of Example 4.3.

5. Conclusion

In this study, we have discussed one of the well-known equations in mathematical physics, namely, the fractional
Bratu differential equation. This problem was solved numerically by employing the spectral collocation approach
and directly estimating the solution using shifted Chebyshev polynomials of the sixth kind as basis functions. The
numerical results presented in the preceding section demonstrate the high accuracy of this method. Our aim is to
generalize the presented algorithm for more advanced models in applied mathematics and physics. As an expected
future work, we aim to employ the developed theoretical results in this paper along with suitable spectral methods to
treat some other problems, for instance, [9, 12].
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