تعداد نشریات | 44 |
تعداد شمارهها | 1,303 |
تعداد مقالات | 16,020 |
تعداد مشاهده مقاله | 52,490,122 |
تعداد دریافت فایل اصل مقاله | 15,217,578 |
Computational Approaches for Analyzing Fractional Impulsive Systems in Differential Equations | ||
Computational Methods for Differential Equations | ||
مقالات آماده انتشار، پذیرفته شده، انتشار آنلاین از تاریخ 18 تیر 1403 اصل مقاله (935.23 K) | ||
نوع مقاله: Research Paper | ||
شناسه دیجیتال (DOI): 10.22034/cmde.2024.61407.2642 | ||
نویسندگان | ||
Zahra Sharifi1؛ Behrouz Parsa Moghaddam1؛ Mousa Ilie2 | ||
1Department of Mathematics, Lahijan Branch, Islamic Azad University, Lahijan, Iran. | ||
2Department of Mathematics, Rasht Branch, Islamic Azad University, Rasht, Iran. | ||
چکیده | ||
This research introduces an algorithmically efficient framework for analyzing the fractional impulsive system, which can be seen as specific instances of the broader fractional Lorenz impulsive system. Notably, these systems find pertinent applications within the financial domain. To this end, the utilization of cubic splines is embraced to effectively approximate the fractional integral within the context of the system. The outcomes derived from this method are subsequently compared with those yielded by alternative techniques documented in existing literature, all pertaining to the integration of functions. Furthermore, the proposed methodology is not only applied to the resolution of fractional impulsive system, but also extended to encompass scenarios involving the fractional Lorenz system with impulsive characteristics. The discernible effects stemming from the selection of disparate impulse patterns are meticulously demonstrated. In synthesis, this paper endeavors to present a pragmatic and proficient resolution to the intricate challenges posed by impulsive systems. | ||
کلیدواژهها | ||
Fractional calculus؛ fractional dynamical system؛ fractional Lorenz impulsive system؛ Cubic spline | ||
آمار تعداد مشاهده مقاله: 82 تعداد دریافت فایل اصل مقاله: 89 |