- [1] R. P. Agarwal, S. Arshad, D. ORegan, and V. Lupulescu,´ A Schauder fixed point theorem in semilinear spaces and applications, Fixed point Theorey Appl., 2013 (2013), 1-13.
- [2] R. P. Agarwal, S. Arshad, D. ORegan, and V. Lupulescu,´ Fuzzy fractional integral equations under compactness type condition, Fract. Calc. Appl. Anal., 15 (2012), 572-590.
- [3] R. P. Agarwal, V. Lakshmikantham, and J. J. Nieto, On the concept of solution for fractional differential equations with uncertainty, Nonlinear Anal., 72(6) (2010), 2859-2862.
- [4] Z. Alijani, D. Baleanu, B. Shiri, and G. C. Wu, Spline collocation methods for systems of fuzzy fractional differential equations, Chaos, Solitons Fractals, 131 (2020), 109510.
- [5] M. Alipour and S. Soradi Zeid, Optimal control of Volterra integro-differential equations based on interpolation polynomials and collocation method, Computational Methods for Differential Equations, 11 (2023), 52-64.
- [6] M. Allahdadi, S. Soradi-Zeid, and T. Shokouhi, Accurate solutions of interval linear quadratic regulator optimal control problems with fractional-order derivative, Soft Comput., (2023), 1-18.
- [7] T. Allahviranloo, S. Salahshour, and S. Abbasbandy, Explicit solutions of fractional differential equations with uncertainty, Soft Comput., 16 (2012), 297-302.
- [8] T. V. An, N. D. Phu, and N. Van Hoa, A survey on non-instantaneous impulsive fuzzy differential equations involving the generalized Caputo fractional derivative in the short memory case, Fuzzy Sets Syst., 443 (2022), 160-197.
- [9] S. Arshad and V. Lupulescu, Fractional differential equation with the fuzzy initial condition, Electron. J. Differ. Equations, 2011 (2011), 1-8.
- [10] S. Arshad and V. Lupulescu, On the fractional differential equations with uncertainty, Nonlinear Anal., Theory Methods Appl., 74 (2011), 3685-3693.
- [11] F. B. Bergamaschi and R. H. N. Santiago, A Study on Constrained Interval Arithmetic. In Explainable AI and Other Applications of Fuzzy Techniques: Proceedings of the 2021 Annual Conference of the North American Fuzzy Information Processing Society, NAFIPS 2021, Springer International Publishing, (2022), 26-36.
- [12] Y. Chalco-Cano, W. A. Lodwick, and B. Bede, Single level constraint interval arithmetic, Fuzzy Sets Syst., 257 (2014), 146-168.
- [13] R. Dehghan and M. Kianpour,, Using positive semi-definite optimization to solve the problem of optimal control of control systems of isothermal continuous stirred tank reactors, J. Oper. Res. Appl., 52 (2017), 1-13.
- [14] K. Diethelm, N. J. Ford, A. D. Freed, and Y. Luchko, Algorithms for the fractional calculus: a selection of numerical methods, Comput. Methods Appl. Mech. Eng., 194 (2005), 743-773.
- [15] N. Eqra, R. Vatankhah, and M. Eghtesad, A novel adaptive multi-critic based separated-states neuro-fuzzy controller: Architecture and application to chaos control, ISA. transactions, 111 (2021), 57-70.
- [16] B. Farhadinia, Pontryagin’s minimum principle for fuzzy optimal control problems, Iran. J. Fuzzy Syst., 11 (2014), 27-43.
- [17] J. Garloff, Interval Gaussian elimination with pivot tightening, SIAM J. Matrix Anal. Appl., 30(4) (2009), 17611772.
- [18] E. R. Hansen and R. I. Greenberg, An interval Newton method, SIAM J. Matrix Anal. Appl., 12(2-3) (1983), 89-98.
- [19] M. K. Kar, A. K. Singh, S. Kumar, and B. Rout, Application of Fractional-Order PID Controller to Improve Stability of a Single-Machine Infinite-Bus System, J. Instit. Engin., (India): Series B, 105(1) (2024), 77-92.
- [20] S. Kuntanapreeda and P. M. Marusak, Nonlinear extended output feedback control for CSTRs with van de Vusse reaction, Computers & Chemical Engineering, 41 (2012), 10-23.
- [21] W. A. Lodwick, Constrained interval arithmetic. Denver: University of Colorado at Denver, Center for Comput. Math., 1999.
- [22] W. A. Lodwick, Interval and fuzzy analysis: A unified approach, Adv. Imaging Electron. Phys., 148 (2007), 76192.
- [23] V. Lupulescu, Fractional calculus for interval-valued functions, Fuzzy Sets Syst., 265 (2014), 63-85.
- [24] V. Lupulescu and N. Van Hoa, Interval Abel integral equation, Soft Comput., 21(10) (2017), 2777-2784.
- [25] S. Maitama and W. Zhao, Homotopy analysis Shehu transform method for solving fuzzy differential equations of fractional and integer order derivatives, Comput. Appl. Math., 40 (2021), 1-30.
- [26] S. Markov, Calculus for interval functions of a real variable, Comput., 22(4) (1979), 325-337.
- [27] M. Mazandarani and A. V. Kamyad, Modified fractional Euler method for solving fuzzy fractional initial value problem, Commun. Nonlinear Sci. Numer. Simul., 18(1) (2013), 12-21.
- [28] S. Mohammadi and S. R. Hejazi, Presentation of the model and optimal control of non-linear fractional-order chaotic system of glucose-insulin, Comput. Methods Biomech. Biomed. Eng., 27 (7) (2024), 836-848.
- [29] A. Mohammed, Z. T. Gong, and M. Osman, A Numerical Technique for Solving Fuzzy Fractional Optimal Control Problems, J. Comput. Anal. Appl., 3 (2021), 413-430.
- [30] A. M. Mustafa, Z. T. Gong, and M. Osman, The solution of fuzzy variational problem and fuzzy optimal control problem under granular differentiability concept, Int. J. Comput. Math., 98(8) (2021), 1495-520.
- [31] M. D. Patil, K. Vadirajacharya, and S. W. Khubalkar, Design and tuning of digital fractional-order PID controller for permanent magnet DC motor, IETE. J. Research, 69(7) (2023), 4349-4359.
- [32] S. Pooseh, R. Almeida, and D. F. Torres, Fractional order optimal control problems with free terminal time, J. Ind. Manage. Optim., 10(2)(2014), 363-381.
- [33] S. Sabermahani and Y. Ordokhani, Solving distributed-order fractional optimal control problems via the Fibonacci wavelet method, J. Vib. Control, 30(1-2) (2024), 418-432.
- [34] S. Salahshour, T. Allahviranloo, and S. Abbasbandy, Solving fuzzy fractional differential equations by fuzzy Laplace transforms, Commun. Nonlinear Sci. Numer. Simul., 17(3) (2012), 1372-1381.
- [35] S. Salahshour, T. Allahviranloo, S. Abbasbandy, and D. Baleanu, Existence and uniqueness results for fractional differential equations with uncertainty, Adv. Differ. Equations, 2012 (2012), 1-12.
- [36] N. Van Hoa, Existence results for extremal solutions of interval fractional functional integro-differential equations, Fuzzy Sets Syst., 347 (2018), 29-53.
- [37] H. Vu, V. Lupulescu, and N. Van Hoa, Existence of extremal solutions to interval-valued delay fractional differential equations via monotone iterative technique, J. Intell. Fuzzy Syst., 34(4) (2018), 2177-2195.
- [38] H. Wang, R. Rodrguez-Lpez, and A. Khastan, On the stopping time problem of interval-valued differential equations under generalized Hukuhara differentiability, Inf. Sci., 579 (2021), 776-795.
- [39] T. Wang, A. San-Millan, and S. S. Aphale, Quantifying the performance enhancement facilitated by fractionalorder implementation of classical control strategies for nanopositioning, ISA. transactions, 2024.
- [40] X. Xia and T. Li, A fuzzy control model based on BP neural network arithmetic for optimal control of smart city facilities, Pers. Ubiquitous Comput., 23 (2019), 453-463.
- [41] C. Yang, W. Lu, and Y. Xia, Positioning accuracy analysis of industrial robots based on non-probabilistic timedependent reliability, IEEE. Trans. Reliab., 2023.
- [42] C. Yang, W. Lu, and Y. Xia, Reliability-constrained optimal attitude-vibration control for rigid-flexible coupling satellite using interval dimension-wise analysis, Reliab. Eng. Syst. Saf., 237 (2023), 109382.
- [43] C. Yang and Y. Xia, Interval Pareto front-based multi-objective robust optimization for sensor placement in structural modal identification, Reliab. Eng. Syst. Saf., 242 (2024), 109703.
- [44] C. Yang and Y. Xia, Interval uncertainty-oriented optimal control method for spacecraft attitude control, IEEE. Trancs. Aerosp. Electron. Syst., 2023.
- [45] T. Zhou, Z. Yuan, and T. Du, On the fractional integral inclusions having exponential kernels for interval-valued convex functions, Math. Sci., 17(2) (2023), 107-120.
|