- [1] J. I. Adenuga, K. B. Ajide, A. T. Odeleye, and A. A. Ayoade, Abundant natural resources, ethnic diversity and inclusive growth in sub-Saharan Africa: a mathematical approach, Application and Applied Mathematics: An International Journal, 16(2) (2021), 1221–1247.
- [2] M. Z. Alam, Md. M. Haque, Md. S. Islam, E. Hossain, S. B. Hasan, S. B. Hasan, and Md. S. Hossain, Comparative study of integrated pest management and farmers practices on sustainable environment in the rice ecosystem, International Journal of Zoology, 2016 (2016), Article ID 7286040.
- [3] A. A. Ayoade, O. Odetunde, and B. Falodun, Modeling and analysis of the impact of vocational education on the unemployment rate in Nigeria, Application and Applied Mathematics: An International Journal (AAM), 15(1) (2020), 550–564.
- [4] A. A. Ayoade and P. I. Farayola, A mathematical modelling of economic restoration through agricultural revitalisation in Nigeria, Journal of Quality Measurement and Analysis, 17(1) (2021), 89–96.
- [5] A. A. Ayoade and S. Thota, Functional Education as a Nexus between Agricultural and Industrial Revolution: An Epidemiological Modelling Approach, Uniciencia, 37(1)(2023), 1–16.
- [6] W. I. Bajwa and M. Kogan, Compendium of IPM Definitions (CID), IPPC Publication, 998 (2002).
- [7] J. R. Beddington, C. A. Free, and J. H. Lawton Characteristics of successful natural enemies in models of biological control of insect pests, Nature, 273(5663) (1978), 513–519.
- [8] R. Bellman and K. L. Cooke, Differential-Difference Equations, Santa Monica, CA: RAND Corporation, 1963.
- [9] S. K. Dara, The new integrated pest management paradigm for the modern age, Journal of Integrated Pest Management, 10(1) (2019), 1–9
- [10] S. K. Dara, D. Peck, and D. Murray, Chemical and non-chemical option for managing two spotted spider mite, western tarnished plant bug and other arthropod pests in strawberries, Insect, 9 (2018), 156.
- [11] J. L. Davies, P. Arnenguad, T. R. Larson, I. A. Graham, P. J. White, A. C. Newton, and A. Amtmann, Contrasting nutrient-disease relationship: potassium gradient in barley leaves have opposite effects on two fungal pathogens with different sensitivities to jasmonic acid, Plant, Cell Environ., 41(1) (2018), 2357–2372.
- [12] N. Derrick and S. Grossman, Differential Equation with Application, Addision Wesley Publishing Company, Inc.: Reading, MA, USA, (1976).
- [13] A. B. Dhahbi, Y. Chargui, S. M. Boulaaras, and S. B. Khalifa, A one-sided competition mathematical model for the sterile insect technique, Complexity, 2020, Article ID 6246808 (2020), 12 pages.
- [14] A. B. Dhahbi, Y. Chargui, S. M. Boulaaras, S. B. Khalifa, W. Koko, and F. Alresheedi, Mathematical modelling of the sterile insect technique using different release strategies, Mathematical Problems in Engineering, 2020 (2020), Article ID 8896566.
- [15] Food and Agricultural Organisation, Declaration on world food security, World Food Summit, FAO, Rome, (1996).
- [16] A. Gassner, D. Harris, K. Mausch, A. Terheggen, C. Lopes, R. F. Finlayson, and P. Dobie, Poverty eradication and food security through agriculture in Africa: Rethinking objectives and entry points, J. Pest Sci., 48(4) (2019), 309–315.
- [17] E. O. Gogo, M. Saidi, J. M. Ochieng, T. Martin, V. Baird, and M. Ngouajio, Microclimate Modification and Insect Pest Exclusion Using Agronet Improve Pod Yield and Quality of French Bean, HortScience horts, 49(10) (2014), 1298–1304.
- [18] K. Havas and M. Salman, Food security: its components and challenges, Int. J. Food Safety, Nutrition and Public Health, 4(1) (2011), 4–11.
- [19] Z. Y. He, A. Abbes, H. Jahanshahi, N. D. Alotaibi, and Y. Wang, Fractional-order discrete-time SIR epidemic model with vaccination: chaos and complexity, Mathematics, 10(2) (2022), 165.
- [20] A. K. Hodson and B. D. Lampinen, Effects of cultivars and leaf traits on the abundance of Pacific spider mites in almond orchards, Arthropod Plant Interact, 13 (2019), 453–463.
- [21] D. L. Jaquette, Mathematical models for controlling growing biological populations: a survey, Operations Research, 20(6) (1972), 1142–1151.
- [22] S. Jand and T. K. Kar, A mathematical study of a prey-predator model in relevance to pest control, Nonlinear Dynamics,74(3) (2013), 667–683.
- [23] K. S. Jatav and J. Dhar, Hybrid approach for pest control with impulsive releasing of natural enemies and chemical pesticides: a plant-pest-natural enemy model, Nonlinear Analysis:Hybrid Systems, 12(2014), 79–92.
- [24] F. Jin, Z. S. Qianz, Y. M. Chu, and M. Rahman, On nonlinear evolution model for drinking behaviour under Caputo-Fabrizio derivative, J. Appl. Anal. Comput., 12(2) (2022), 790–806.
- [25] S. Karmaker, F. Y. Ruhi, and U. K. Mallic, Mathematical analysis of a model on guava for biological pest control, Mathematical Modelling of Engineering Problems, 5(4) (2020), 427-440.
- [26] M. Kogan, Integrated pest management: Historical perspectives and contemporary developments, Annual Review of Entomology, 43 (1998), 243–270.
- [27] N. Kunjwal and R. M. Srivastava, Insect pests of vegetables, Pests and their management, Springer, Singapore, (2018), 163–221.
- [28] L. A. Lacey, Microbial control of insect and mite pests: from theory to practice, Academic Press, London, United Kingdom, (2017).
- [29] H. J. Leach, E. Moses, P. Hanson, Fanning, and R. Isaacs, Rapid harvest schedules and fruit removal as nonchemical approaches for managing spotted wing Drosophila, J. Pest Sci., 47 (2017), 42–53
- [30] Y. Li, Z. Teng, K. Wang, and A. Muhammadhaji, Dynamic analysis of general integrated pest management model with double impulsive control, Discrete Dynamics in Nature and Society, 2015 (2015), Article ID 839097.
- [31] M. Liao, J. Ing, J. PaezChavez, and M. Wiercigroch, Bifurcation techniques for stiffness identification of an impact oscillator, Communications in Nonlinear Science and Numerical Simulation,41 (2016), 19–31.
- [32] B. Liu, Y. Wang and B. Kang, Dynamics on a pest management SI model with control strategies of different frequencies, Nonlinear Analysis: Hybrid Systems, 12 (2014), 66–78.
- [33] B. Liu, G. Hu, B. Kang and X. Huang, Analysis of a hybrid pest management model incorporating pest resistance and different control strategies, Mathematical Biosciences and Engineering, 17(5) (2020), 4364–4383.
- [34] M. R. Mehrnejad, Investigation into the overwintering and winter management of the common pistachio psyllid Agonoscena pistaciae (Hemiptera: Aphalaridae), a major pest in pistachio plantations, Zoology and Ecology, 28 (2018), 384–388.
- [35] W. R. Morrison, D. H. Lee, B. D. Short, A. Khrimian, and T. C. Leskey, Establishing the behavioral basis for an attract-and-kill strategy to manage the invasive Halyomorpha halys in apple orchards, J. Pest Sci., 89(1) (2016), 81–96.
- [36] J. Paez Chavez, Y. Liu, E. Pavlovskaia, and M. Wiercigroch, Path-following analysis of the dynamical response of a piecewise-linear capsule system, Communications in Nonlinear Science and Numerical Simulation, 37 (2016), 102–114.
- [37] J. Paez Chavez, A. Voigt, J. Schreiter, U. Marschner, S. Siegmund, and A. Richter, A new self-excited chemofluidic oscillator based on stimuli-responsive hydrogels :Mathematical modeling and dynamic behavior, Applied Mathematical Modelling, 40(3) (2016), 1339–1351.
- [38] J. Paez Chavez, A. Voigt, J. Schreiter, U. Marschner, S. Siegmund, and A. Richter, A new self-excited chemofluidic oscillator based on stimuli-responsive hydrogels: Mathematical modeling and dynamic behavior, Applied Mathematical Modelling, 40(23-4) (2016), 1339–1351.
- [39] J. Paez Chavez, D. Jungmann, and S. Siegmund, Modeling and analysis of integrated pest control strategies via impulsive differential equations, International Journal of Differential Equations, 2017 (2017), Article ID 1820607.
- [40] J. Paez Chavez, D. Jungmann, and S. Siegmund, A comparative study of integrated pest management strategies based on impulsive control, Journal of Biological Dynamics, 12(1) (2018), 318–341.
- [41] C. Shoemaker, Optimization of agricultural pest management II: formulation of a control model, Mathematical Biosciences, 17(3-4) (1973), 357–365.
- [42] S. Thota and A. A. Ayoade, On dynamical analysis of a prey-diseased predator model with refuge in prey, Applied Mathematics & Information Sciences, 15(6) (2021), 717–721.
- [43] S. Thota. A three species ecological model with Holling Type-II functional response, Information Science Letters, 10(3) (2021), 439–444.
- [44] S. Thota, On An Ecological Model of Mutualisim between Two Species with A Mortal Predator, Applications and Applied Mathematics, 15(2) (2020), 1309–1322.
- [45] USDA-ARS (United States Department of Agriculture-Agricultural Research Service), A national road map for integrated pest management, 2018.
- [46] K. Wickwire, Mathematical models for the control of pests and infectious diseases: a survey, Theoretical Population Biology. An International Journal, 11(2) (1977), 182–238.
- [47] Z. H. Zhang and Y.H. Suo, Stability and sensitivity analysis of a plant disease model with continuous cultural control strategy, Journal of Applied Mathematics, Article ID 207959, 2014 (2014).
|