- [1] E. M. Abdelghany, W. M. Abd-Elhameed, G. M. Moatimid, Y. H. Youssri, and A. G. Atta, A Tau Approach for Solving Time-Fractional Heat Equation Based on the Shifted Sixth-Kind Chebyshev Polynomials, Symmetry, 15(594) (2023).
- [2] W. A. Ahmood and A. Kilicman, Solutions of linear multi-dimensional fractional order Volterra integral equations, Journal of Theoretical and Applied Information Technology, 89 (2016), 381-388.
- [3] R. Agarwal, S. Jain, and R. P. Agarwal, Solution of fractional Volterra integral equation and non-homogeneous time fractional heat equation using integral transform of pathway type, Progress in Fractional Differentiation and Applications, 1 (2015), 145-155.
- [4] A. Asanov, R. Almeida, and A. B. Malinowska, Fractional differential equations and Volterra–Stieltjes integral equations of the second kind, Computational and Applied Mathematics, 38(160) (2019).
- [5] A. Atangana and N. Bildik, Existence and numerical solution of the Volterra fractional integral equations of the second kind, Mathematical Problems in Engineering, (2013).
- [6] A. G. Atta and Y. H. Youssri, Advanced shifted first-kind Chebyshev collocation approach for solving the nonlinear time-fractional partial integro-differential equation with a weakly singular kernel, Computational & amp; Applied Mathematics, 41(381) (2022).
- [7] E. Bonyah, M. Yavuz, D. Baleanu, and S. Kumar, A robust study on the listeriosis disease by adopting fractalfractional operators, Alexandria Engineering Journal, 61(3) (2022), 2016-202.
- [8] E. C. De Oliveira and J. A. Tenreiro Machado, A review of definitions for fractional derivatives and integral, Mathematical Problems in Engineering, (2014), 238459.
- [9] L. M. Delves and J. L. Mohamed, Computational methods for integral equations, Cambridge University Press, 1985.
- [10] S. Duran, H. Durur, M. Yavuz, and A. Yokus, Discussion of numerical and analytical techniques for the emerging fractional order murnaghan model in materials science, Optical and Quantum Electronic, 55(571) (2023).
- [11] S. Esmaeili, M. Shamsi, and M. Dehghan, Numerical solution of fractional differential equations via a Volterra integral equation approach, Open Physics, 11(10) (2013), 1470-1481.
- [12] R. Goreno, A. A. Kilbas, F. Mainardi, and S. V. Rogosin, Mittag-Leffler Functions, Related Topics and Applications, Springer, Berlin, 2014.
- [13] R. M. Hafez and Y. H. Youssri, Shifted Jacobi collocation scheme for multidimensional time-fractional order telegraph equation, Iranian Journal of Numerical Analysis and Optimization, 10(1-17) (2020), 195-225.
- [14] M. Ilie, J. Biazar, and Z. Ayati, Neumann method for solving conformable fractional Volterra integral equations, Computational Methods for Differential Equations, 8(1) (2020), 54-68.
- [15] M. Ilie and A. Khoshkenar, Resonant solitons solutions to the time M-fractional Schr¨odinger equation, Iranian Journal of Optimization, 13(3) (2022), 197-210.
- [16] M. Ilie and A. Khoshkenar, A novel study on nonlinear fractional differential equations: general solution, Iranian Journal of Optimization, 14(4) (2023).
- [17] A. Khoshkenar, M. Ilie, K. Hosseini, D. Baleanu, S. Salahshour, and J. R. Lee, Further studies on ordinary differential equations involving the M-fractional derivative, AIMS MATHEMATICS, 7(6) (2023), 10977-10993.
- [18] M. Mohammad, and A. Trounev, Fractional nonlinear Volterra–Fredholm integral equations involving AtanganaBaleanu fractional derivative: framelet applications, Advances in Difference Equations, 618 (2020).
- [19] M. Moustafa, Y. H. Youssri, and A. G. Atta, quot;Explicit Chebyshev Petrov-Galerkin scheme for timefractional fourth-order uniform Euler–Bernoulli pinned–pinned beam equation, Nonlinear Engineering, 12(1) (2023), 20220308.
- [20] B. A. Ozturk, Examination of Sturm-Liouville problem with proportional derivative in control theory, Mathematical Modelling and Numerical Simulation with Applications, 3(4) (2023), 335-35.
- [21] G. F. Simmons, Differential Equations whit Applications and Historical Notes, McGraw-Hill, Inc. New York, 1974.
- [22] F. Smithies, Integral equations, Cambridge University Press, 1958.
- [23] M. Tariq, S. K. Sahoo, H. Ahmad, A. A. Shaikh, B. Kodamasingh, and D. Khan, Some integral inequalities via new family of preinvex functions, Mathematical Modelling and Numerical Simulation With Applications, 2(2) (2022), 117-126.
- [24] J. Vanterler da C. Sousa, and E. Capelas de Oliveira, M-fractional derivative with classical properties, (2017), arXiv:1704.08187.
- [25] J. Vanterler da C. Sousa, and E. Capelas de Oliveira, A New Truncated M-Fractional Derivative Type Unifying Some Fractional Derivative Types with Classical Properties, International Journal of Analysis and Applications, 16(1) (2018), 83-96.
- [26] A. M. Wazwaz, Linear and nonlinear integral equations methods and applications, Higher Education Press, Beijing and Springer-Verlag Berlin Heidelberg, 2011.
- [27] Y. H. Youssri and W. M. Abd-Elhameed, Numerical spectral LEGENDRE-GALERKIN algorithm for solving time fractional Telegraph equation, Romanian Journal of Physics, 63(107) (2018).
- [28] Y. H. Youssri and A. G. Atta, Petrov-Galerkin Lucas Polynomials Procedure for the Time-Fractional Diffusion Equation, Contemporary Mathematics, (2023).
- [29] L. Zada, R. Nawaz, K. S. Nisar, M. Tahir, M. Yavuz, M. K. A. Kaabar, and F. Mart´ınez, New approximateanalytical solutions to partial differential equations via auxiliary function method, Partial Differential Equations in Applied Mathematics, 4(100045) (2021).
|