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Abstract
In this current article, the well-known Neumann method for solving the time M-fractional Volterra integral equa-

tions of the second kind is developed. In the several theorems, existence and uniqueness of the solution and con-
vergence of the proposed approach are also studied. The Neumann method for this class of the time M-fractional

Volterra integral equations has been called the M-fractional Neumann method (MFNM). The results obtained

demonstrate the efficiency of the proposed method for the time M-fractional Volterra integral equations. Several
illustrative numerical examples have presented the ability and adequacy of the MFNM for a class of fractional

integral equations.
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1. Introduction

Thanks to the efforts of mathematicians over the past few decades, fractional calculus is as well known to everyone as
ordinary calculus. Famous mathematicians who have made significant efforts in this field include Riemann, Liouville,
Grenville, Caputo, and other mathematicians are cited [8]. All fractional derivatives are generally divided into local
and non-local categories. However, some of those definitions take care of drawbacks that caused their application to
confront difficulties such as satisfying the derivative product rule, the derivative quotient rule, and the chain rule. In
2017, Sousa et al. introduced an M-fractional derivative involving a Mittag-Leffler function with one parameter that
also satisfies the properties of integer-order calculus [12, 24]. In this sense, Sousa and Oliveira introduced a truncated
M-fractional derivative type that unifies four existing fractional derivative types mentioned above and which also
satisfied the classical properties of integer-order calculus [25]. The truncated M-fractional derivative is one of the
types of local fractional derivatives, so in the mode of derivation from the positive integer order, it completely follows
the ordinary derivative, and in the fractional mode, it has almost all the properties of the ordinary derivative. Many
researchers have used the M-fraction derivative in their research [15, 17].

Definition 1.1. Given a function f : [0,∞) → R. Then the truncated M-fractional derivative of f of order α is
defined by

iDα,βM f(t) = lim
ε→0

f (tiEβ(εt−α))− f(t)

ε
, (1.1)

for all t > 0, α ∈ (0, 1), where iEβ(·), β > 0 is the Mittag-Leffler function with one parameter as defined by in Eq.
(1.1) [25].
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Note that if f is α- differentiable in some (0, a), a ≥ 0, and limt→0+ iDα,βM f(t) exists, then one can define [25]

iDα,βM f(0) = lim
t→0+

iDα,βM f(t).

Definition 1.2. Given a function f : [0,∞)→ R, a ≥ 0. Then local M-fractional integral of f order α is defined by

MT α,βa f(t) = Γ(β + 1)

∫ t

a

f(s)

s1−α
ds (1.2)

, where the integral is the usual Riemann improper integral, and α ∈ (0, 1), and β > 0 [25]. One of the well results is
the following [24, 25]. Let α ∈ (0, 1), and f be α-differentiable at a point t > 0, then

H: (Invers theorem) iDα,βM
(
MT α,βa f(t)

)
= f(t),

I: (Fundamental theorem of calculus) MT α,βa

(
iDα,βM f(t)

)
= f(t)− f(0).

Most phenomena in our real world are described by time fractional functional equations (FFEs). Although having
the exact solution of FFEs in analyzing the phenomena is important, there are many FFEs that cannot be resolved
accurately. Due to this fact, finding approximate solutions to time-fractional functional equations is clearly required.
In recent years, many effective methods have been proposed for approximate solutions of time-fractional integral
equations [5–11].

Özturk used examination of Sturm-Liouville problem with proportional derivatives in control theory [20]. Duran
et al. obtained the discussion of numerical and analytical techniques for the emerging fractional order Murnaghan
model in materials science [10]. Tariq et al. found some integral inequalities via a new family of preinvex functions.
Bonayah et al. created a robust study on the listeriosis disease by adopting fractal-fractional operators [23]. Bonyah et
al. proposed a robust study on the listeriosis disease by adopting fractal-fractional operators.[7]. Zada et al. obtained
new approximate-analytical solutions to partial differential equations via auxiliary function method [7]. Youssri et
al. used numerical spectral Legandre-Galerkin algorithm for solving time fractional Telegraph equation [27]. Hafez et
al. proposed a shifted Jacobi collocation scheme for multidimensional time-fractional order telegraph equation [13].
Atta et al. found advanced shifted first-kind Chebyshev collocation approach for solving the nonlinear time-fractional
partial integro-differential equation with a weakly singular kernel [6]. Abdelghany et al. gained a Tau approach
for solving time-fractional heat equation based on the shifted sixth-kind chebyshev polynomials [1]. Youssri et al.
obtained Petrov-Galerkin lucas polynomials procedure for the time-fractional diffusion equation [28]. Moustafa et al.
used explicit Chebyshev PetrovGalerkin scheme for time-fractional fourth-order uniform EulerBernoli pinned beam
equation [19].

In this study, the Neumann method is advanced for time M-fractional Volterra integral equations of the second
kind, and convergence of the proposed approach is studied and this method is utilized to find an approximate solution
of the time M-fractional Volterra integral equations.

The organization of the paper is as follows: In sections 2 and 3, several primary definitions and essential concepts
and convergence study related to the local time M-fractional Volterra integral equations of the second kind are given.
In section 4, the local M-fractional Neumann method is presented to solve a class of fractional integral equations. In
section 5, several illustrative examples are provided to show the efficiency of the method. Finally, the conclusion is
appointed in section 6.

2. The several primary definitions and essential concepts

Suppose the local time M-fractional Volterra integral equations (MFVIEs) as the following form

f(t) = g(t) + ηMT α,βa (K(t, s)f(s)), ∀α ∈ (0, 1), β > 0, (2.1)

where g and K are known functions, η and a are constants, and f is an unknown function [9–14]. Applying the local
M-fractional integral definition on Eq. (2.1), results in

f(t) = g(t) + η

∫ t

a

Γ(β + 1)K(t, s)f(s)

s1−α
ds. (2.2)
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By considering

Kα
β (t, s) =

Γ(β + 1)K(t, s)

s1−α
, (2.3)

as the new Volterra kernel, and substituting (2.3) into (2.2), we obtain

f(t) = g(t) + η

∫ t

a

Kα
β (t, s)f(s)ds. (2.4)

According to Eq. (2.4), the operator form of MFVIEs (2.1), can be denoted as follows

f = g + ηKα
β f, ∀α ∈ (0, 1), β > 0, (2.5)

or

Lαβf = (I − ηKα
β )f = g, ∀α ∈ (0, 1), β > 0, (2.6)

Definition 2.1. Lets consider η = η0, α = α0, β0 = β, and (Lα0

β0
)−1 as an L2 operator exists and satisfies

(Lα0

β0
)−1Lα0

β0
= Lα0

β0
(Lα0

β0
)−1 = I, (2.7)

then η0 is called a regular value of the local M-fractional operator Kα0

β0
[9–14].

Theorem 2.2. If for a given α = α0, β = β0, and η = η0, the operator (Lα0

β0
)−1 exists, then it is unique [9–14].

Proof. Suppose that (Lα0

β0
)−1 and (L̃α0

β0
)−1 are two L2 operators that satisfy Eq. (2.3), and let

H = (Lα0

β0
)−1 − (L̃α0

β0
)−1.

Regarding Eq. (2.7), one has

(Lα0

β0
)−1Lα0

β0
= Lα0

β0
(Lα0

β0
)−1 = I, (2.8)

(L̃α0

β0
)−1Lα0

β0
= Lα0

β0
(L̃α0

β0
)−1 = I,

and subtracting these two relations results in

HLα0

β0
= Lα0

β0
H = 0. (2.9)

applying Eq. (2.9) by the local M-fractional fractional operator (Lα0

β0
)−1 and regarding Eq. (2.8), we get H = 0. �

Theorem 2.3. If η is a regular value of the local M-fractional fractional operator Kα
β , with inverse the local M-

fractional fractional operator (Lαβ)−1, then for any L2 function g, Eq. (2.6) has a unique L2 solution, say, f , satisfying

[9–14].

f = (Lαβ)−1g. (2.10)

Proof. By Substitution of Eq. (2.10) into Eq. (2.2), we have

Lαβ(Lαβ)−1g = g, (2.11)

and since Lαβ(Lαβ)−1 = I, thus the function f , defined by Eq. (2.10), is a solution of Eq. (2.6). To show the uniqueness,

lets f1 and f2 be two different solutions of (2.6), then

Lαβ(f1 − f2) = 0,

hence

(Lαβ)−1Lαβ(f1 − f2) = 0.

So

f1 = f2,
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which completes the proof. If η is a regular value of the local M-fractional operator Kα
β , then the Eq. (2.6) has a

unique solution

f = (Lαβ)−1g = (I − ηKα
β )−1g.

So

(Lαβ)−1 = (I − ηKα
β )−1 = I + ηKα

β + (ηKα
β )2 + (ηKα

β )3 + (ηKα
β )4 + · · · ,

(Lαβ)−1 = I +

∞∑
n=1

(ηKα
β )n, ∀α ∈ (0, 1), β > 0, (2.12)

where Eq. (2.12) is called the local M-fractional Neumann series for the invers the local M-fractional operator (Lαβ)−1.
We set

f0 = g,

f1 = g + ηKα
β f0 = g + ηKα

β g,

f2 = g + ηKα
β f1 = g + ηKα

β g + (ηKα
β )2g,

f3 = g + ηKα
β f2 = g + ηKα

β g + (ηKα
β )2g + (ηKα

β )3g,

...

so, the nth approximation to f , can be presented as below

fn = g + ηKα
β fn−1 = g +

n∑
i=1

η(ηKα
β )ig.

Therefore, if the sequence of functions fn have a limit as n, tends to infinity, then

f = lim
n→∞

fn = g +

∞∑
i=1

(ηKα
β )ig, ∀α ∈ (0, 1), β > 0, (2.13)

where Eq. (2.13) is called the local M-fractional Neumann series for the solution x of MFVIEs (2.3) [14, 26]. �

3. The convergence study

Theorem 3.1. The local M-fractional Neumann series (2.12), for (Lαβ)−1α ∈ (0, 1) and β > 0, is strong convergence

if ‖ηKα
β ‖ < 1,∀α ∈ (0, 1), β > 0, [9–14].

Proof. Assume that α ∈ (0, 1), β > 0 is given and considered as a constant throughout the proof. Define

Sn =

n∑
i=0

η(Kα
β )i, (3.1)

and take n > m. Regarding Eq. (3.1), we have

‖Sn − Sm‖ ≤
n∑

i=m+1

‖ηKα
β ‖i =

‖ηKα
β ‖(‖ηKα

β ‖m − ‖ηKα
β ‖n)

1− |ηKα
β |

. (3.2)

Since ‖ηKα
β ‖ < 1, thus

lim
n→∞

‖ηKα
β ‖n = 0, (3.3)

by considering Eqs. (3.2) and (3.3), we derive

lim
n,m→∞

‖Sn − Sm‖ = 0. (3.4)

So, the sequence Sn is a Cauchy sequence, so the limit Sn exists.
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Now, lets consider the residual Rn as the following form

Rn = I − (I − ηKα
β )Sn. (3.5)

Setting Eq. (3.1) in Eq. (3.5), results in

Rn = ηKα
β )n+1,

‖Rn‖ ≤ |ηKα
β |n+1.

Since ‖ηKα
β ‖ < 1, therefore

lim
n→∞

‖Rn‖ = 0.

Then, the local M-fractional operator (Lαβ)−1 is a right inverse of Lαβ , a similar proof shows that it is also a left inverse
of the local M-fractional operator Lαβ . �

Lemma 3.2. Whenever Kα
β is an L2 the local M-fractional Volterra operator for a given α ∈ (0, 1), β > 0, and b > a,

then

|(Kα
β )n+1(t, s)| ≤

‖Kα
β ‖

n+1
E

[(n− 1)!]
1
2

K1(t)K2(s),

where K1(t) = [
∫ t
a
|Kα

β (t, s)|2ds] 1
2 , and K2(s) = [

∫ b
s
|Kα

β (t, s)|2dt] 1
2 .

Proof. For α, β = 1, refer to books [9–26]. �

Theorem 3.3. If Kα
β is an L2 the local M-fractional Volterra operator for a given α ∈ (0, 1), β > 0, the local M-

fractional Neumann series (2.12), converges strongly for all η to the inverse the local M-fractional operator of Kα
β

[9–14].

Proof: According to Eq. (3.3), for n > m, we obtain

‖Sn − Sm‖E ≤
n∑

i=m+1

‖ηKα
β ‖iE . (3.6)

But from Lemma 3.2, and Euclidean norm, we get

‖ηKα
β ‖iE ≤ |η|i

‖Kα
β ‖iE

[(i− 2)!]
1
2

,

and hence, for all η,

lim
i→∞

|ηKα
β |iE = 0. (3.7)

By considering Eqs. (3.6) and (3.7), we persuade the sequence Sn is Cauchy, so the local M-fractional Neumann series
(2.12), is strong convergence for all η to the inverse the local M-fractional operator of Kα

β

4. The summary of local M-fractional Neumann method (MFNM) for applying in MFVIEs

Suppose local time M-fractional Volterra integral equations of the second kind as follows form

f(t) = g(t) + ηMT α,βa (K(t, s)g(s)), ∀α ∈ (0, 1), β > 0,
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where g, K are known functions and η, a are constants and f an unknown function. We define

f0(t) = g(t),

f1(t) = g(t) + ηMT α,βa (K(t, s)f0(s))

= g(t) + ηMT α,βa (K(t, s)g(s)),

f2(t) = g(t) + ηMT α,βa (K(t, s)f1(s))

= g(t) + ηMT α,βa (K(t, s)g(s)) + η2MT α,βa (K(t, s)MT α,βa (K(s, s1)g(s1))),

...

moreover, the nth approximations fn, to x, will be as

fn(t) = g(t) + ηMT α,βa (K(t, s)fn−1(s))

= g(t) + ηMT α,βa (K(t, s)g(s)) + η2MT α,βa

(
K(t, s)MT α,βa (K(s, s1)g(s1))

)
+ · · ·

+ ηnMT α,βa

(
K(t, s)MT α,βa

(
K(s, s1) · · · (MT α,βa (K(sn−1, sn)g(sn)

))
.

The solution of MFVIEs is

f(t) = lim
n→∞

fn(t).

5. Examples

In this section, the several illustrative examples are provided to demonstrate the efficiency of the method in solving
the local time M-fractional Volterra integral equations of second kind.

Example 5.1. Consider the following local time M-fractional Volterra integral equation

f(t) = 1−MT α,β0 ((t− s)f(s)), ∀α ∈ (0, 1), β > 0, (5.1)

where the exact solution of this MFVIE (5.1), for non-fractional case is as follows [21]

f(t) = cos(t).

According to the proposed the local M-fractional Neumann method, we have

f0(t) =1,

f1(t) =1−MT α,βa (t− s),

f2(t) =1−MT α,βa (t− s) + MT α,βa

(
(t− s)MT α,βa (s− s1)

)
, (5.2)

f3(t) =1−MT α,βa (t− s) + MT α,βa

(
(t− s)MT α,βa (s− s1)

)
−MT α,βa

(
(t− s) + MT α,βa

(
(t− s)MT α,βa (s− s1)

))
.

...

By solving this sequence of integral equations, the solution of Eq. (5.2), can be obtained as the following form

f0(t) =1,

f1(t) =1− Γ(β + 1)

α(1 + α)
t1+α,

...
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Figure 1. The 7th-order approximation of MFNM for different values α and β (left) and for α, β = 1,
versus exact solution of Non-fractional Volterra integral equation (right).

The seven-terms approximate solutions of Eq. (5.1), for different α, β, will be obtained, as follows

f6(t) =1− Γ(β + 1)

α(1 + α)
t1+α +

Γ(β + 1)2

α(1 + 2α)(1 + α)2
t2+2α

2!

− Γ(β + 1)3

α(1 + 2α)(2 + 3α)(1 + α)3
t3+3α

3!
+

Γ(β + 1)4

α(1 + 2α)(2 + 3α)(3 + 4α)(1 + α)4
t4+4α

4!

− Γ(β + 1)5

α(1 + 2α)(2 + 3α)(3 + 4α)(4 + 5α)(1 + α)5
t5+5α

5!

+
Γ(β + 1)6

α(1 + 2α)(2 + 3α)(3 + 4α)(4 + 5α)(5 + 6α)(1 + α)6
t6+6α

6!
.

In Figure 1, the seventh-order approximate solution of Local M-fractional Volterra integral equation for different
Values α, β, and exact solution for α, β = 1 are plotted

Example 5.2. Consider the following local time M-fractional Volterra integral equation

f(t) = 2 + t2 + MT α,βα ((t− s)f(s)), ∀α ∈ (0, 1), β > 0, (5.3)

where for α = 1, β = 1, the exact solution of Eq. (5.3) is as follows [21]

f(t) = 4 cosh(t)− 2.

Applying to the proposed local M-fractional Neumann method, results in

f0(t) =2 + t2,

f1(t) =2 + t2 + MT α,βa ((t− s)(2 + s2)),

f2(t) =2 + t2 + MT α,βa ((t− s)(2 + s2)) + MT α,βa

(
(t− s)MT α,βa ((s− s1)(2 + s21))

)
, (5.4)

f3(t) =2 + t2 + MT α,βa ((t− s)(2 + s2)) + MT α,βa

(
(t− s)MT α,βa ((s− s1)(2 + s21))

)
+ MT α,βa

(
(t− s) + MT α,βa

(
(t− s)MT α,βa ((s− s1)(2 + s21))

))
,

...
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Figure 2. The 7th-order approximation of MFNM for different values α and β (left) and for α, β = 1,
versus exact solution of Non-fractional Volterra integral equation (right).

The corresponding solutions of these sequences (5.4) are as below

f0(t) =2 + t2,

f1(t) =2 + t2 +
Γ(β + 1)

α(α+ 1)(α+ 2)(α+ 3)
tα(t3α2 + t3α+ 2tα2 + 10tα+ 12t),

f2(t) =2 + t2 +
Γ(β + 1)

α(α+ 1)(α+ 2)(α+ 3)
tα(t3α2 + t3α+ 2tα2 + 10tα+ 12t)

+
Γ(β + 1)2

2α(α+ 1)(α+ 2)(2α+ 3)(α3 + 6α2 + 11α+ 6)
t1+2α(2t3α4 + 5t3α3 + 4t3α2

+ 4tα4 + t3α+ 34tα3 + 106tα2 + 144tα+ 72t),

...

In Figure 2, the seventh-order approximate solution of Local M-fractional Volterra integral equation for different
Values α, β, and exact solution for α, β = 1 are plotted.

Example 5.3. Consider the following MFVIE

f(t) = exp(t) + MT α,β0 (exp((t− s)f(s)), ∀α ∈ (0, 1), β > 0, (5.5)

whit the exact solution of this local M-fractional Volterra integral Equation (5.5), for non-fractional case is as follows
[21]

f(t) = exp(2t).

According to the MFNM approach, we have

f0(t) = exp(t),

f1(t) = exp(t) + MT α,βa (exp(t− s) exp(s))

f2(t) = exp(t) + MT α,βa (exp(t− s) exp(s)) + MT α,βa

(
exp(t− s)MT α,βa (exp(s− s1) exp(s1))

)
,

f3(t) = exp(t) + MT α,βa (exp(t− s) exp(s)) + MT α,βa

(
exp(t− s)MT α,βa (exp(s− s1) exp(s1))

)
(5.6)

+ MT α,βa

(
(t− s)MT α,βa ((s− s1) exp(s1))

)
+ MT α,βa

(
(t− s)MT α,βa

(
(s− s1)MT α,βa ((s1 − s2) exp(s2))

))
,
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Figure 3. The 7th-order approximation of MFNM for different values α and β (left) and for α, β = 1,
versus exact solution of Non-fractional Volterra integral equation (right).

By solving this sequence of integral Equation (5.8), seventh-order approximation of Eq. (5.5) is

f6(t) =et
[
1 +

Γ(β + 1)

1!
(
tα

α
) +

Γ(β + 1)2

2!
(
tα

α
)2 +

Γ(β + 1)3

3!
(
tα

α
)3 +

Γ(β + 1)4

4!
(
tα

α
)4

+
Γ(β + 1)5

5!
(
tα

α
)5 +

Γ(β + 1)6

6!
(
tα

α
)6
]
.

In Figure 3, the seventh-order approximate solution of Local M-fractional Volterra integral equation for different
Values α, β, and exact solution for α, β = 1 are plotted.

Example 5.4. Consider the time fractional integral equation as follows

f(t) = 3 sin(2t)−MT α,βa ((t− s)f(s)), ∀α ∈ (0, 1), β > 0, (5.7)

with the exact solution of this local M-fractional Volterra integral equation for non-fractional case is [21]

f(t) = 4 sin(2t)− 2 sin(t).

By using the proposed MFNM approach, we gain

f0(t) =3 sin(2t),

f1(t) =3 sin(2t)−MT α,βa ((t− s)3 sin(2s)), (5.8)

f2(t) =3 sin(2t) + MT α,βa ((t− s)3 sin(2s))

+ MT α,βa

(
(t− s)MT α,βa ((s− s1)3 sin(2s1))

)
.

...

By solving above sequences of integral equation, the second-order approximate solution of Eq. (5.8), can be obtained
that in Figure 4, for different Values α, β, and exact solution for α, β = 1 are plotted.

6. Conclusion

In the course of the present investigation, was presented the solving for a class of fractional Volterra integral
equations in the sense of the truncated M-fractional derivative. For this aim, the well-recognized Neumann method
was successfully expanded and the several theorems related to conditions for existence and uniqueness and also sufficient
condition for convergence of solution were proved. The proposed method was called the M-fractional Neumann method
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Figure 4. The 7th-order approximation of MFNM for different values α and β (left) and for α, β = 1,
versus exact solution of Non-fractional Volterra integral equation (right).

(MFNM). Since for α = 1, and β = 1, MFVIEs are changed into a Volterra integral equations, thus not unexpected that
M-fractional Neumann method have had the same accuracy and efficiency the Neumann method for Volterra integral
equations. The several illustrative examples also were presented, corroborating the satisfactory implementation of the
method in solving the local M-fractional Volterra integral equations. In this study, the norm ‖ · ‖2, was utilized.
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