- [1] A. S. Abdel Rady, E. S. Osman, and M. Khalfallah, On soliton solutions for a generalized HHirota-Satsuma coupled KdV equation, Communications in Nonlinear Science and Numerical Simulation, 15(2) (2010), 264-274.
- [2] A. S. Abdel Rady and M. Khalfallah, On soliton solutions for Boussinesq-Burgers equations, Communications in Nonlinear Science and Numerical Simulation, 15(4) (2010), 886-894.
- [3] G. P. Agrawal, Nonlinear fiber optics, Elsevier Science, 2012.
- [4] X. Ai and G. Gui, On the inverse scattering problem and the low regularity solutions for the Dullin-Gottwald-Holm equation, Nonlinear Analysis: Real World Applications, 11(2) (2010), 888-894.
- [5] D. Baleanu, M. Inc, A. Yusuf, and A. Isa Aliyu, Optimal system, nonlinear self-adjointness and conservation laws for generalized shallow water wave equation, Open Physics, 16 (2018), 364-370.
- [6] D. Baleanu, M. Inc, A. Yusuf, and A. I. Aliyu, Lie symmetry analysis and conservation laws for the time fractional simplified modified Kawahara equation, Open Physics, 16(1) (2018), 302-310.
- [7] A. Bekir and A. C. Cevikel, Solitary wave solutions of two nonlinear physical models by tanh-coth method, Communications in Nonlinear Science and Numerical Simulation, 14(5) (2009), 1804-1809.
- [8] G. Betchewe, B. B. Thomas, K. K. Victor, and K. T. Crepin, Explicit series solutions to nonlinear evolution equations: The sine-cosine method, Applied Mathematics and Computation, 215(12) (2010), 4239-4247.
- [9] A. H. Bhrawy, M. A. Abdelkawy, and A. Biswas, Cnoidal and snoidal wave solutions to coupled nonlinear wave equations by the extended Jacobi’s elliptic function method, Communications in Nonlinear Science and Numerical Simulation, 18(4) (2013), 915-925.
- [10] J. Biazar and Z. Ayati, Exp and modified exp function methods for nonlinear Drinfeld-Sokolov system, Journal of King Saud University-Science, 24(4) (2012), 315-318.
- [11] R. W. Boyd, Nonlinear optics, Elsevier Science, 2003.
- [12] T. F. Chan, E. l. Selim, and M. Nikolova, Algorithms for finding global minimizers of image segmentation and denoising models, SIAM Journal on Applied Mathematics, 66(5) (2006), 1632-1648.
- [13] J. M. Conde, P. R. Gordoa, and A. Pickering, A new kind of B¨acklund transformation for partial differential equations, Reports on Mathematical Physics, 70(2) (2012), 149-161.
- [14] X. Deng, J. Cao, and X. Li, Travelling wave solutions for the nonlinear dispersion Drinfel’d-Sokolov (D(m,n)) system, Communications in Nonlinear Science and Numerical Simulation, 15(2) (2010), 281-290.
- [15] A. Ebaid, An improvement on the exp-function method when balancing the highest order linear and nonlinear terms, Journal of Mathematical Analysis and Applications, 392(1) (2012), 1-5.
- [16] L. Edelstein-Keshet, Mathematical models in biology, Society for Industrial and Applied Mathematics Philadelphia, Philadelphia, 2005.
- [17] M. K. Elboree, The Jacobi elliptic function method and its application for two component BKP hierarchy equations, Computers & Mathematics with Applications, 62(12) (2011), 4402-4414.
- [18] M. Eslami, B. Fathi vajargah, and M. Mirzazadeh, Exact solutions of modified Zakharov-Kuznetsov equation by the homogeneous balance method, Ain Shams Engineering Journal, 5(1) (2014), 221-225.
- [19] E. Fan, Two new applications of the homogeneous balance method, Physics Letters A, 265(5) (2000), 353-357.
- [20] K. A. Gepreel and A. R. Shehata, Rational Jacobi elliptic solutions for nonlinear differential-difference lattice equations, Applied Mathematics Letters, 25(9) (2012), 1173-1178.
- [21] G. Gilboa and S. Osher, Nonlocal operators with applications to image processing, Multiscale Modeling and Simulation, 7(3) (2008), 1005-1028.
- [22] G. Hashemi, A novel analytical approximation approach for strongly nonlinear oscillation systems based on the energy balance method and He’s frequency-amplitude formulation, Computational Methods for Differential Equations, 11(3) (2023), 464-477.
- [23] O. A. Ilhan, J. Manafian, H. M. Baskonus, and M. Lakestani, Solitary wave solitons to one model in the shallow water waves,The European Physical Journal Plus, 136(3) (2021), 337.
- [24] M. Inc, A. Yusuf, A. I. Aliyu, and D. Baleanu, Lie symmetry analysis and explicit solutions for the time fractional generalized Burgers-Huxley equation, Optical and Quantum Electronics, 50(2) (2018), 91-96.
- [25] M. Inc, M. Hashemi, and A. Isa Aliyu, Exact solutions and conservation laws of the Bogoyavlenskii equation, Acta Physica Polonica, 133 (2018), 1133-1137.
- [26] M. Inc, A. I. Aliyu, A. Yusuf, and D. Baleanu, On the classification of conservation laws and soliton solutions of the long short-wave interaction system, Modern Physics Letters B, 32(18) (2018), 1850202.
- [27] A. Isa Aliyu, M. Inc, A. Yusuf, and D. Baleanu, Symmetry analysis, explicit solutions, and conservation laws of a sixth-order nonlinear Ramani equation, Symmetry, 10 (2018), 341.
- [28] M. Jafari, A. Zaeim, and S. Mahdion, Scaling symmetry and a new conservation law of the harry dym equation, Mathematics Interdisciplinary Research, 6(2) (2021), 151-158.
- [29] M. Jafari, A. Zaeim, and A. Tanhaeivash, Symmetry group analysis and conservation laws of the potential modified KdV equation using the scaling method, International Journal of Geometric Methods in Modern Physics, 19(7) (2022), 2250098.
- [30] M. Jafari and R. Darvazebanzade, Approximate symmetry group analysis and similarity reductions of the perturbed mKdV-KS equation, Computational Methods for Differential Equations, 11(1) (2023), 175-182.
- [31] M. Jafari and S. Mahdion, Non-classical symmetry and new exact solutions of the kudryashov-sinelshchikov and modified KdV-ZK equations, AUT Journal of Mathematics and Computing, 4(2) (2023), 195-203.
- [32] M. Jafari, S. Mahdion, A. Akgül, and S. M. Eldin, New conservation laws of the boussinesq and generalized kadomtsev–petviashvili equations via homotopy operator, Results in Physics, 47 (2023), 106369.
- [33] M. Jafari and R. Darvazebanzade, Analyzing of approximate symmetry and new conservation laws of perturbed generalized Benjamin-Bona-Mahony equation, AUT Journal of Mathematics and Computing, 5(1) (2024), 61-69.
- [34] B. Kalegowda and R. Raghavachar, Multi-soliton solutions to the generalized boussinesq equation of tenth order, Computational Methods for Differential Equations, 11(4) (2023), 727-737.
- [35] M. M. Kassem and A. S. Rashed, Group solution of a time dependent chemical convective process, Applied Mathematics and Computation, 215(5) (2009), 1671-1684.
- [36] M. M. Kassem and A. S. Rashed, N-solitons and cuspon waves solutions of (2+1)-dimensional Broer-KaupKupershmidt equations via hidden symmetries of lie optimal system, Chinese Journal of Physics, 57 (2019), 90-104.
- [37] M. Khalfallah, Exact traveling wave solutions of the Boussinesq-Burgers equation, Mathematical and Computer Modelling, 49(3) (2009), 666-671.
- [38] H. K. Khalil, Nonlinear systems, Prentice Hall, 2002.
- [39] K. Khan and M. Ali Akbar, Traveling wave solutions of the (2+1)-dimensional Zoomeron equation and the Burgers equations via the MSE method and the exp-function method, Ain Shams Engineering Journal, 5(1) (2014), 247-256.
- [40] S. Kondo and T. Miura,Reaction-diffusion model as a framework for understanding biological pattern formation, Science, 329 (2010), 1616-1620.
- [41] M. Lassas, J. L. Mueller, S. Siltanen, and A. Stahel, The Novikov-Veselov equation and the inverse scattering method, part I: Analysis, Physica D: Nonlinear Phenomena, 241(16) (2012), 1322-1335.
- [42] B. Lu, Coupling Bäcklund trasnsformation of Riccati equation and division theorem method for traveling wave solutions of some class of NLPDEs, Communications in Nonlinear Science and Numerical Simulation, 17(12) (2012), 4626-4633.
- [43] Z. Lü, J. Su, and F. Xie, Construction of exact solutions to the Jimbo-Miwa equation through Bäcklund transformation and symbolic computation, Computers & Mathematics with Applications, 65(4) (2013), 648-656.
- [44] W. X. Ma, Multi-component bi-hamiltonian Dirac integrable equations, Chaos, Solitons and Fractals, 39(1) (2009), 282-287.
- [45] W. X. Ma and A. Abdeljabbar, A bilinear B¨acklund transformation of a (3+1)-dimensional generalized KP equation, Applied Mathematics Letters, 25(10) (2012), 1500-1504.
- [46] W. X. Ma, Y. Zhang, Y. Tang and J. Tu, Hirota bilinear equations with linear subspaces of solutions, Applied Mathematics and Computation 218 (13) (2012), 7174-7183.
- [47] S. M. Mabrouk and A. S. Rashed, Analysis of (3 + 1)-dimensional Boiti- Leon-Manna-Pempinelli equation via Lax pair investigation and group transformation method, Computers & Mathematics with Applications, 74(10) (2017), 2546-2556.
- [48] S. M. Mabrouk, Chase-repulsion analysis for (2+1)-dimensional Lotka-Volterra system, International Journal of Engineering Research and Technology, 8(6) (2019), 875-879.
- [49] B. A. Malomed, Soliton management in periodic systems, Springer New York, New York, 2006.
- [50] J. Manafian, L. A. Dawood, and M. Lakestani, New solutions to a generalized fifth-order kdv like equation with prime number p=3 via a generalized bilinear differential operator, Partial Differential Equations in Applied Mathematics, 9 (2024), 100600.
- [51] M. Mohamed, S. M. Mabrouk, and A. S. Rashed, Mathematical investigation of the infection dynamics of covid-19 using the fractional differential quadrature method, Computation, 11(10) (2023), 198.
- [52] J. D. Murray and S. S. Antman, Mathematical biology. I, an introduction, Springer New York, 2002.
- [53] Q. Pang, Study on the behavior of oscillating solitons using the (2+1)-dimensional nonlinear system, Applied Mathematics and Computation, 217(5) (2010), 2015-2023.
- [54] K. Parand and J. A. Rad, Exp-function method for some nonlinear PDE’s and a nonlinear ODE’s, Journal of King Saud University-Science, 24(1) (2012), 1-10.
- [55] A. Patel and V. Kumar, Dark and kink soliton solutions of the generalized ZK-BBM equation by iterative scheme, Chinese Journal of Physics, 56(3) (2018), 819-829.
- [56] A. D. Polyanin and A. I. Zhurov, On RF-pairs, B¨acklund transformations and linearization of nonlinear equations, Communications in Nonlinear Science and Numerical Simulation, 17(2) (2012), 536-544.
- [57] A. S. Rashed and M. M. Kassem, Group analysis for natural convection from a vertical plate, Journal of Computational and Applied Mathematics, 222(2) (2008), 392-403.
- [58] A. S. Rashed and M. M. Kassem, Hidden symmetries and exact solutions of integro-differential Jaulent-Miodek evolution equation, Applied Mathematics and Computation, 247 (2014), 1141-1155.
- [59] A. S. Rashed, Analysis of (3+1)-dimensional unsteady gas flow using optimal system of lie symmetries, Mathematics and Computers in Simulation, 156 (2019), 327-346.
- [60] A. S. Rashed, S. M. Mabrouk, and A. M. Wazwaz, Forward scattering for non-linear wave propagation in (3 + 1)-dimensional Kimbo-Miwa equation using singular manifold and group transformation methods, Waves in Random and Complex Media, 32(2) (2022), 663-675.
- [61] S. Z. Rida and M. Khalfallah, New periodic wave and soliton solutions for a Kadomtsev-Petviashvili (KP) like equation coupled to a Schr¨odinger equation, Communications in Nonlinear Science and Numerical Simulation, 15(10) (2010), 2818-2827.
- [62] R. Saleh, M. Kassem, and S. Mabrouk, Exact solutions of Calgero-Bogoyavlenskii-Schiff equation using the singular manifold method after Lie reductions, Mathematical Methods in the Applied Sciences, 40(16) (2017), 5851-5862.
- [63] R. Saleh and A. S. Rashed, New exact solutions of (3 + 1)-dimensional generalized Kadomtsev-Petviashvili equation using a combination of Lie symmetry and singular manifold methods, Mathematical Methods in the Applied Sciences, 43(4) (2020), 2045-2055.
- [64] H. Sasaki, Inverse scattering problems for the Hartree equation whose interaction potential decays rapidly, Journal of Differential Equations, 252(2) (2012), 2004-2023.
- [65] J. J. E. Slotine and W. Li, Applied nonlinear control, Prentice Hall, 1991.
- [66] F. Ta¸scan and A. Bekir, Analytic solutions of the (2+1)-dimensional nonlinear evolution equations using the sine-cosine method, Applied Mathematics and Computation, 215(8) (2009), 3134-3139.
- [67] Y. Wang and L. Wei, New exact solutions to the (2+1)-dimensional Konopelchenko-Dubrovsky equation, Communications in Nonlinear Science and Numerical Simulation, 15(2) (2010), 216-224.
- [68] Y. H. Wang and H. Wang, A coupled kdv system: Consistent tanh expansion, soliton-cnoidal wave solutions and nonlocal symmetries, Chinese Journal of Physics, 56(2) (2018), 598-604.
- [69] A. M. Wazwaz, he tanh–coth and the sine-cosine methods for kinks, solitons, and periodic solutions for the Pochhammer-Chree equations, Applied Mathematics and Computation, 195(1) (2008), 24-33.
- [70] A. M. Wazwaz, N-soliton solutions for the integrable bidirectional sixth-order Sawada-Kotera equation, Applied Mathematics and Computation, 216(8) (2010), 2317-2320.
- [71] A. M. Wazwaz, A study on two extensions of the Bogoyavlenskii-Schieff equation, Communications in Nonlinear Science and Numerical Simulation, 17(4) (2012), 1500-1505.
- [72] A. M. Wazwaz, Structures of multiple soliton solutions of the generalized, asymmetric and modified NizhnikNovikov-Veselov equations, Applied Mathematics and Computation, 218(22) (2012), 11344-11349.
- [73] L. Wazzan, A modified tanh-coth method for solving the KdV and the KdV-burgers’ equations, Communications in Nonlinear Science and Numerical Simulation, 14(2) (2009), 443-450.
- [74] L. Wazzan, A modified tanh-coth method for solving the general Burgers-Fisher and the Kuramoto-Sivashinsky equations, Communications in Nonlinear Science and Numerical Simulation, 14(6) (2009), 2642-2652.
- [75] B. Wei, C. Hu, X. Guan, Z. Luan, M. Yao, and W. Liu, Analytic study on soliton solutions for a dirac integrable equation, Optik - International Journal for Light and Electron Optics, 183 (2019), 869-874.
- [76] X. X. Xu and Y. P. Sun, An integrable coupling hierarchy of Dirac integrable hierarchy, its liouville integrability and Darboux transformation, The Journal of Nonlinear Sciences and Applications, 10(6) (2017), 3328-3343.
- [77] M. Yaghobi Moghaddam, A. Asgari, and H. Yazdani, Exact travelling wave solutions for the generalized nonlinear Schr¨odinger (GNLS) equation with a source by extended tanh-coth, sine-cosine and exp-function methods, Applied Mathematics and Computation, 210(2) (2009), 422-435.
- [78] Y. Ye, Z. Li, C. Li, S. Shen, and W. X. Ma, A generalized Dirac soliton hierarchy and its bi-hamiltonian structure, Applied Mathematics Letters, 60 (2016), 67-72.
- [79] M. X. Yu, B. Tian, Y. Q. Yuan, Y. Sun, and X. X. Du, Conservation laws, solitons, breather and rogue waves for the (2+1)-dimensional variable-coefficient Nizhnik-Novikov-Veselov system in an inhomogeneous medium, Chinese Journal of Physics, 56(2) (2018), 645-658.
- [80] E. M. Zayed and M. A. Abdelaziz, Exact solutions for the nonlinear schr¨odinger equation with variable coefficients using the generalized extended tanh-function, the sine-cosine and the exp-function methods, Applied Mathematics and Computation, 218(5) (2011), 2259-2268.
- [81] J. L. Zhang, Y. M. Wang, M. L. Wang, and Z. D. Fang, New applications of the homogeneous balance principle, Chinese Physics, 12(3) (2003), 245-250.
- [82] J. Zhang, Y. Zhao, F. You, and Z. Popowicz, A new super extension of Dirac hierarchy, Abstract and Applied Analysis, 2014 (2014), 472101.
- [83] Y. Zhou, F. Yang, and Q. Liu, Reduction of the Sharma-Tasso-Olver equation and series solutions, Communications in Nonlinear Science and Numerical Simulation, 16(2) (2011), 641-646.
|