- [1] M. Abramowitz and I. Stegun, Handbook of mathematical functions, Dover, New York, 1972.
- [2] L. Bougoffa and M.A. Al-khadhi, New explicit solutions for Troesch’s boundary value problem, Appl. Math. Inform. Sci., 3(1) (2009), 89–96.
- [3] C. Canuto, M. Y. Hussaini, A. Quarteroni, and T. A. Zang, Spectral Methods in Fluid Dynamics, Springer, New York, 1988.
- [4] S. Chang and I. Chang, A new algorithm for calculating one-dimensional differential transform of non-linear functions, Applied Mathematics and Computation, 195(2) (2008), 799-808.
- [5] S. H. Chang, Numerical solution of Troesch’s problem by simple shooting method, Appl. Math. Comput., 216 (2010), 3303-3306.
- [6] S. H. Chang, A variational iteration method for solving Troesch’s problem, J. Comp. Appl. Math., 234 (2011), 3043-3047.
- [7] E. Deeba, S.A. Khuri, and S. Xie, An algorithm for solving boundary value problems, J. Comput. Phys., 159 (2000), 125-138.
- [8] M. Delkhosh and K. Parand, Generalized pseudospectral method: Theory and applications, Journal of Computational Science, 34 (2019), 11-32.
- [9] M. Delkhosh and K. Parand, A new computational method based on fractional Lagrange functions to solve multiterm fractional differential equations, Numer Algor 88 (2021), 729766.
- [10] M. Delkhosh, K. Parand, and D.D. Ganji, An efficient numerical method to solve the boundary layer flow of an eyring-powell non-newtonian fluid, Journal of Applied and Computational Mechanics, 5(2) (2019), 454-467.
- [11] G. Elnagar, M. A. Kazemi, and M. Razzaghi, The pseudospectral legendre method for discretizing optimal control problem, IEEE Transactions on Automatic Control, 40(10) (1995) 1793-1796.
- [12] G. Elnagar and M. A. Kazemi, Pseudospectral Chebyshev optimal control of constrained nonlinear dynamical systems, Comput. Optim. Appl., 11 (1998) 195-217.
- [13] A. Erdelyi, W. Magnus, F. Oberhettinger, and F. Tricomi, Higher rtanscendental functions, McGraw-Hill, New York, 1953.
- [14] U. Erdogan and T. Ozis, A smart nonstandard finite difference scheme for second order nonlinear boundary value problems, J. Comput. Phys., 230 (2011), 6464-6474.
- [15] H. R. Erfanian, M. H. Noori Skandari, and A. V. Kamyad, Control of a class of nonsmooth dynamical systems, Journal of Vibration and Control, 21(11) (2015), 2212-2222.
- [16] F. Fahroo and I. M. Ross, Costate estimation by a legendre pseudospectral method, Journal of Guidance, Control, and Dynamics, 24(2) (2001), 270-277.
- [17] F. Fahroo and I. M. Ross, Direct trajectory optimization by a Chebyshev pseudospectral method, Journal of Guidance, Control and Dynamics, 25(1) (2002), 160-166.
- [18] X. Feng, L. Mei, and G. He, An efficient algorithm for solving Troesch’s problem, Appl. Math. Comput., 189 (2007), 500-507.
- [19] F. M. Villanueva, Maneuverable reentry vehicle trajectory optimization using pseudospectral method, 2022 IEEE Engineering International Research Conference (EIRCON), (2022), 1-4.
- [20] G. Freud, Orthogonal polynomials, Pregamon Press, Elmsford, 1971.
- [21] M. Ghaznavi and M. H. Noori Skandari, An efficient pseudo-spectral method for nonsmooth dynamical systems, Iran. J. Sci. Technol. Trans. Sci, 42(2) (2018), 635-646.
- [22] D. Gidaspow and B. Baker, A model for discharge of storage batteries, Journal of the Electrochemical Society, 120(8) (1973), 1005-1010.
- [23] Q. Gong, W. Kang, and I. M. Ross, A pseudospectral method for the optimal control of constrained feedback linearizable systems, IEEE Trans. Autom. Control, 51(7) (2006), 1115-1129.
- [24] Q. Gong, I. Michael Ross, W. Kang, and F. Fahroo, Connections between the covector mapping theorem and convergence of pseudospectral methods for optimal control, Computational Optimization and Applications, 41(3) (2008), 307 - 335.
- [25] S. A. Khuri, A numerical algorithm for solving Troesch’s problem, Int. J. Computer Math., 80 (2003), 493-498.
- [26] S. A. Khuri and A. Sayfy, Troesch’s problem: B-spline collocation approach, Math. Comput. Modelling, 54 (2011), 1907-1918.
- [27] H. V. Leal, Y. Khan, G. F. Anaya, A. H. May, A. S. Reyes, U. F. Nino, V. J. Fernandez, and D. P. Diaz, A general solution for Troesch’s problem, Mathematical Problems in Engineering, 2012, Article ID 208375.
- [28] Y. Li, W. Chen, and L. Yang, Multistage linear Gauss pseudospectral method for piecewise continuous nonlinear optimal control problems, IEEE Transactions on Aerospace and Electronic Systems, 57(4), (2021) 2298-2310.
- [29] V. L. Makarov and D. V. Dragunov, An efficient approach for solving stiff nonlinear boundary value problems, Journal of Computational and Applied Mathematics, 345 (2019), 452-470.
- [30] S. H. Mirmoradia, I. Hosseinpoura, S. Ghanbarpourb, and A. Barari,Application of an approximate analytical method to nonlinear Troesch’s problem, Applied Mathematical Sciences, 3 (2009), 1579-1585.
- [31] F. Mohammadizadeh, H. A. Tehrani, and M. H. Noori Skandari, Chebyshev pseudo-spectral method for optimal control problem of Burgers equation, Iranian Journal of Numerical Analysis and Optimization, 9(2) (2019), 77-102.
- [32] S. Momani, S. Abuasad, and Z. Odibat, Variational iteration method for solving nonlinear boundary value problems, Applied Mathematics and Computation, 183(2) (2006), 1351-1358.
- [33] M. Nabati and M. Jalalvand, Solution of Troesch’s problem through double exponential Sinc-Galerkin method, Computational Methods for Differential Equations, 5(2) (2017), 141-157.
- [34] M. H. Noori Skandari and M. Ghaznavi, Chebyshev pseudo-spectral method for Bratu’s problem, Iran. J. Sci. Technol. Trans. Sci, 41(4) (2017), 913-921.
- [35] M. H. Noori Skandari and M. Ghaznavi, A numerical method for solving shortest path problems, Calcolo, 14(1) (2018), 1-14.
- [36] M. H. Noori Skandari and M. Ghaznavi, A novel technique for a class of singular boundary value problems, Computational Methods for Differential Equations, 6(1) (2018), 40-52.
- [37] M. H. Noori Skandari, M. Mahmoudi, J. Vahidi, and M. Ghovatmand, Legendre pseudo-spectral method for solving multi-pantograph delay differential equations, Journal of New Researches in Mathematics, (2022), In press.
- [38] M. H. Noori Skandari, A. V. Kamyad and S. Effati, Generalized Euler-Lagrange equation for nonsmooth calculus of variations, Nonlinear Dynamics, 75(1-2) (2014), 85-100.
- [39] E. Polak, Optimization: algorithms and consistent approximations, Springer, Heidelberg, 1997.
- [40] K. Parand, S. Latifi, M. Delkhosh, and M. M. Moayeri, Generalized Lagrangian Jacobi Gauss collocation method for solving unsteady isothermal gas through a micro-nano porous medium, The European Physical Journal Plus, 133(28) (2018).
- [41] M. A. Z. Raja, Stochastic numerical techniques for solving Troesch’s Problem, Information Sciences, 279 (2014), 860-873.
- [42] S. M. Roberts and J. S. Shipman, On the closed-form solution of Troesch’s problem, J. Comput. Phys., 21 (1976), 291-304.
- [43] A. Saadatmandi and T. Abdolahi-Niasar, Numerical solution of Troeschs problem using Christov rational Functions, Computational Methods for Differential Equations, 3 (2015), 123-133.
- [44] M. Scott, On the conversion of boundary-value problems into stable initial-value problems via several invariant imbedding algorithms, in: A.K. Aziz (Ed.), Numerical Solutions of Boundary-Value Problems for Ordinary Differential Equations, 1975.
- [45] H. Temimi and H. Kurkcu, An accurate asymptotic approximation and precise numerical solution of highly sensitive Troeschs problem, Applied Mathematics and Computation, 235 (2014), 253 260.
- [46] L. N. Trefethen, Spectral methods in MATLAB, Society for industrial and applied mathematics, Philadelphia, 2000.
- [47] B. A. Troesch, A simple approach to a sensitive two-point boundary value problem, J. Comput. Phys., 21 (1976), 279-290.
- [48] E. Weibel, On the confinement of a plasma by magne-tostatic fields, Physics of Fluids. 2(1) (1959), 52-56.
- [49] M. Youssef and G. Baumann, Troeschs problem solved by Sinc methods, Mathematics and Computers in Simulation, 162 (2019), 31-44.
- [50] M. Zarebnia and M. Sajjadian, The sinc-Galerkin method for solving Troeschs problem, Mathematical and Computer Modelling, 56 (2012), 218-228.
- [51] A. E. Zuniga, L. M. l Palacios-Pineda, I. H. Jimenez-Cedeno, O. M. Romero, and D. O. Trejo, A fractal model for current generation in porous electrodes, Journal of Electroanalytical Chemistry, 880 (2021), 114883.
|