- [1] S. Z. S. Abdalla and P. Winker, Modelling stock market volatility using univariate GARCH models: Evidence from Sudan and Egypt, International Journal of Economics and Finance, 4(8) (2012), 161-176.
- [2] M. A. Akbar, A. M. Wazwaz, F. Mahmud, D. Baleanu, R. Roy, H. K. Barman, W. Mahmoud, M. A. Al Sharif, and M. S. Osman, Dynamical behavior of solitons of the perturbed nonlinear Schr¨odinger equation and microtubules through the generalized Kudryashov scheme, Results in Physics, 43 (2022), 106079.
- [3] G. Akram, M. Sadaf, M. Dawood, M. Abbas, and D. Baleanu, Solitary wave solutions to Gardner equation using improved tan -expansion method, AIMS Mathematics, 8(2) (2023), 4390-4406.
- [4] G. Akram and M. Sarfraz, Multiple optical soliton solutions for CGL equation with Kerr law nonlinearity via extended modified auxiliary equation mapping method, Optik, 242 (2021), 167258.
- [5] K. K. Ali, M. A. Abd El Salam, E. M. Mohamed, B. Samet, S. Kumar, and M.S. Osman, Numerical solution for generalized nonlinear fractional integro-differential equations with linear functional arguments using Chebyshev series, Advances in Difference Equations, 2020(1) (2020), 1-23.
- [6] A. Biswas, M. Ekici, A. Sonmezoglu, and M. R. Belic, Highly dispersive optical solitons with Kerr law nonlinearity by extended Jacobi’s elliptic function expansion, Optik, 183 (2019), 395-400.
- [7] F. Black and M. Scholes, The pricing of options and corporate liabilities, J. Polit. Econ. 81 (1973), 637–654.
- [8] Q. Chen, H. M. Baskonus, W. Gao, and E. Ilhan, Soliton theory and modulation instability analysis: The Ivancevic option pricing model in economy, Alexandria Engineering Journal,61(10) (2022), 7843-7851.
- [9] Y. Q. Chen, Y. H. Tang, J. Manafian, H. Rezazadeh, and M. S. Osman, Dark wave, rogue wave and perturbation solutions of Ivancevic option pricing model, Nonlinear Dynamics, 105(3) (2021), 2539-2548.
- [10] M. Contreras, R. Pellicer, M. Villena, and A. Ruiz, A quantum model of option pricing: when Black-Scholes meets Schr¨odinger and its semi-classical limit, Physica A: Statistical Mechanics and Its Applications, 389(23) (2010), 5447– 5459.
- [11] S. O. Edeki, O. O. Ugbebor, and O. Gonzalez-Gaxiola, Analytical solutions of the Ivancevic option pricing model with a nonzero adaptive market potential, International Journal of Pure and Applied Mathematics, 115(1) (2017), 187-198.
- [12] S. O. Edeki, O. O. Ugbebor, and J. R. de Ch’avez, Solving the Ivancevic Pricing Model Using the He’s Frecuency Amplitude Formulation, European Journal of Pure and Applied Mathematics, 10(4) (2017), 631-637.
- [13] A. A. Elmandouh and M. E. Elbrolosy, Integrability, Variational Principle, Bifurcation, and New Wave Solutions for the Ivancevic Option Pricing Model, Journal of Mathematics, (2022), 2022.
- [14] B. Ghanbari and A. Akgul, Abundant new analytical and approximate solutions to the generalized Schamel equation, Physica Scripta, 95(7) (2020), 075201.
- [15] B. Ghanbari and D. Baleanu, Applications of two novel techniques in finding optical soliton solutions of modified nonlinear Schrodinger equations, Results in Physics, (2022), 106171.
- [16] B. Ghanbari, H. Gu¨nerhan, O. A. Ilhan, and H. M. Baskonus,˙ Some new families of exact solutions to a new extension of nonlinear Schr¨odinger equation, Physica Scripta, 95(7) (2020), 075208.
- [17] B. Ghanbari and J. G. Liu, Exact solitary wave solutions to the (2+ 1)-dimensional generalised Camassa–Holm–Kadomtsev–Petviashvili equation, Pramana, 94(1) (2020), 21.
- [18] K. Hosseini, K. Sadri, S. Salahshour, D. Baleanu, M. Mirzazadeh, and M. Inc, The generalized Sasa-Satsuma equation and its optical solitons, Optical and Quantum Electronics, 54(11) (2022), 1-15.
- [19] J. C. Hull, Options, futures, and other derivatives, Pearson, USA, 2006.
- [20] A. Hussain, A. Jhangeer, M. Abbas, I. Khan, and E. S. M. Sherif, Optical solitons of fractional complex Ginzburg–Landau equation with conformable, beta, and M-truncated derivatives: A comparative study, Advances in Difference Equations, 2020 (2020), 1-19.
- [21] H. F. Ismael, H. Bulut, C. Park, and M. S. Osman, M-lump, N-soliton solutions, and the collision phenomena for the (2+ 1)-dimensional Date-Jimbo-Kashiwara-Miwa equation, Results in Physics, 19 (2020), 103329.
- [22] M. S. Iqbal, A. R. Seadawy, M. Z. Baber, and M. Qasim, Application of modified exponential rational function method to Jaulent-Miodek system leading to exact classical solutions, Chaos, Solitons , Fractals, 164 (2022),112600.
- [23] V. G. Ivancevic, Adaptive-wave alternative for the black-scholes option pricing model, Cognitive Computation, 2(1) (2010), 17-30.
- [24] R. M. Jena, S. Chakraverty, and D. Baleanu, A novel analytical technique for the solution of time-fractional Ivancevic option pricing model, Phys. A: Stat. Mech. Appl. 550 (2020), 124380.
- [25] A. Kartono, S. Solekha, and T. Sumaryada, Foreign currency exchange rate prediction using non-linear Schr¨odinger equations with economic fundamental parameters, Chaos, Solitons Fractals, 152 (2021), 111320.
- [26] A. Kirman and G. Teyssiere, Microeconomic models for long memory in the volatility of financial time series, Studies in Nonlinear Dynamics Econometrics, (4) (2002).
- [27] B. Kopcasiz and E. Yasar, The investigation of unique optical soliton solutions for dual-mode nonlinear Schr¨odingers equation with new mechanisms. Journal of Optics, (2022), 1-15.
- [28] S. Kumar, M. Niwas, M. S. Osman, and M. A. Abdou, Abundant different types of exact soliton solution to the (4+ 1)-dimensional Fokas and (2+ 1)-dimensional breaking soliton equations, Communications in Theoretical Physics, 73(10) (2021), 105007.
- [29] V. Kumar and A. M. Wazwaz, Lie symmetry analysis and soliton solutions for complex short pulse equation, Waves in Random and Complex Media, 32 (2022), 968-979.
- [30] S. Malik, H. Almusawa, S. Kumar, A. M. Wazwaz, and M. S. Osman, A (2+ 1)-dimensional Kadomtsev–Petviashvili equation with competing dispersion effect: Painlev´e analysis, dynamical behavior and invariant solutions, Results in Physics, 23 (2021), 104043.
- [31] R. C. Merton, Theory of rational option pricing, Bell J Econ Manage Sci 4, (1973), 141–183.
- [32] R. Mia, M. M. Miah, and M. S. Osman, A new implementation of a novel analytical method for finding the analytical solutions of the (2+ 1)-dimensional KP-BBM equation, Heliyon, 9(5) (2023).
- [33] J. Panos, L´evy Processes with Applications in Finance. LAP LAMBERT Academic Publishing, 2016.
- [34] M. Raheel, K. K. Ali, A. Zafar, A. Bekir, O. A. Arqub, and M. Abukhaled, Exploring the Analytical Solutions to the Economical Model via Three Different Methods, Journal of Mathematics, (2023), 2023.
- [35] R. U. Rahman, M. M. M. Qousini, A. Alshehri, S. M. Eldin, K. El-Rashidy, and M. S. Osman, Evaluation of the performance of fractional evolution equations based on fractional operators and sensitivity assessment, Results in Physics, (2023), 106537.
- [36] H. Rezazadeh, K. K. Ali, S. Sahoo, J. Vahidi, and M. Inc, New optical soliton solutions to magneto-optic waveguides, Optical and Quantum Electronics,54(12) (2022), 801.
- [37] S. Sahoo and S. S. Ray, Analysis of Lie symmetries with conservation laws for the (3+ 1) dimensional timefractional mKdV–ZK equation in ion-acoustic waves, Nonlinear Dynamics, 90 (2017), 1105-1113.
- [38] S. Sahoo and S. S. Ray, Lie symmetries analysis and conservation laws for the fractional Calogero–Degasperis–Ibragimov–Shabat equation, International Journal of Geometric Methods in Modern Physics, 15(07) (2018), 1850110.
- [39] S. Sahoo and S. S. Ray, The conservation laws with Lie symmetry analysis for time fractional integrable coupled KdV–mKdV system, International Journal of Non-linear Mechanics, 98 (2018), 114-121.
- [40] S. San, A. R. Seadawy, and E. Yasar, Optical soliton solution analysis for the (2+ 1) dimensional KunduMukherjee-Naskar model with local fractional derivatives, Optical and Quantum Electronics, 54(7) (2022), 1-21.
- [41] A. R. Seadawy and N. Cheemaa, Applications of extended modified auxiliary equation mapping method for highorder dispersive extended nonlinear Schro¨dinger equation in nonlinear optics, Modern Physics Letters B, 33(18) (2019), 1950203.
- [42] A. R. Seadawy, M. Iqbal, and D. Lu, Applications of propagation of long-wave with dissipation and dispersion in nonlinear media via solitary wave solutions of generalized Kadomtsev–Petviashvili modified equal width dynamical equation, Computers Mathematics with Applications, 78(11) (2019), 3620-3632.
- [43] I. Siddique, M. M. Jaradat, A. Zafar, K. B. Mehdi, and M. S. Osman, Exact traveling wave solutions for two prolific conformable M-Fractional differential equations via three diverse approaches, Results in Physics, 28 (2021), 104557.
- [44] J. V. Sousa and E. C. de Oliveira, A new truncated M-fractional derivative type unifying some fractional derivative types with classical properties, Int. J. Anal. Appl., 16 (2018), 83–96.
- [45] T. A. Sulaiman, G. Yel, and H. Bulut, M-fractional solitons and periodic wave solutions to the Hirota–Maccari system, Modern Physics Letters B, 33(05) (2019), 1950052.
- [46] K. U. Tariq, H. Rezazadeh, M. Zubair, M.S. Osman, and Akinyemi,L. New Exact and Solitary Wave Solutions of Nonlinear Schamel–KdV Equation, International Journal of Applied and Computational Mathematics, 8(3) (2022), 114.
- [47] S. Tarla, K. K. Ali, R. Yilmazer, and M. S. Osman, New optical solitons based on the perturbed Chen-Lee-Liu model through Jacobi elliptic function method, Optical and Quantum Electronics, 54(2) (2022), 1-12.
- [48] A. Tripathy and S. Sahoo, New distinct optical dynamics of the beta-fractionally perturbed Chen–Lee–Liu model in fiber optics, Chaos, Solitons Fractals, 163 (2022), 112545.
- [49] A. Tripathy, S. Sahoo, H. Rezazadeh, Z. P. Izgi, and M.S. Osman, Dynamics of damped and undamped wave natures in ferromagnetic materials, Optik, 281 (2023), 170817.
- [50] J. Vanterler, D. A. C. Sousa, E. Capelas, and D. E. Oliveira, A new truncated M-fractional derivative type unifying some fractional derivative types with classical properties, International Journal of Analysis and Applications, 16(1) (2018), 83-96.
- [51] O. Vukovic, Interconnectedness of Schr¨odinger and Black-Scholes Equation, J. Appl. Math. Phys., 3(9) (2015), 1108–1113.
- [52] Z. Yan, Vector financial rogue waves, Physics letters a, 375(48) (2011), 4274-4279.
- [53] Y. Yue, L. He, and G. Liu, Modeling and application of a new nonlinear fractional financial model, Journal of Applied Mathematics, (2013), 2013.
|