- [1] U. M. Abubakar, A study of extended beta and associated functions connected to Fox-Wright function, J. Frac. Calculus Appl., 12(3) (2021), 1–23.
- [2] G. E. Andrews, R. Askey, and R. Roy, Special functions, Cambridge University Press, Cambridge, 1999.
- [3] A. M. O. Anwar, F. Jarad, D. Baleanu, and F. Ayaz, Fractional Caputo heat equation within the double Laplace transform, Rom. Journ. Phys., 58(1-2) (2013), 15–22.
- [4] V. Ya. Arsenin, Basic equations and special functions of mathematical physics, Iliffe Books Ltd, London, 1968.
- [5] E. Ata and I˙. O. Kıymaz, A study on certain properties of generalized special functions defined by Fox-Wright function, Appl. Math. Nonlinear Sci., 5(1) (2020), 147–162.
- [6] E. Ata, Generalized beta function defined by Wright function, arXiv:1803.03121v3 [math.CA], (2021).
- [7] E. Ata, Modified special functions defined by generalized M-series and their properties, arXiv:2201.00867v1 [math.CA], (2022).
- [8] E. Ata, and I˙. O. Kıymaz, Generalized gamma, beta and hypergeometric functions defined by Wright function and applications to fractional differential equations, Cumhuriyet Sci. J., 43(4) (2022), 684–695.
- [9] W. W. Bell, Special functions for scientists and engineers, Dover Publications, New York, 2013.
- [10] M. A. Chaudhry, A. Qadir, M. Rafique, and S. M. Zubair, Extension of Euler’s beta function, J. Comput. Appl. Math., 78 (1997), 19–32.
- [11] M. A. Chaudhry, A. Qadir, H. M. Srivastava, and R. B. Paris, Extended hypergeometric and confluent hypergeo- metric functions, Appl. Math. Comput., 159 (2004), 589–602.
- [12] J. Choi, A. K. Rathie, and R. K. Parmar, Extension of extended beta, hypergeometric and confluent hypergeometric functions, Honam Math. J., 36 (2014), 357–385.
- [13] A. C¸ etinkaya, I˙. O. Kıymaz, P. Agarwal, and R. A. Agarwal, A comparative study on generating function relations for generalized hypergeometric functions via generalized fractional operators, Adv. Differ. Equ., 2018(1) (2018), 1–11.
- [14] L. Debnath, The double Laplace transforms and their properties with applications to functional, integral and partial differential equations, Int. J. Appl. Comput. Math., 2 (2016), 223–241.
- [15] A. Goswami, S. Jain, P. Agarwal, and S. Aracı, A note on the new extended beta and Gauss hypergeometric functions, Appl. Math. Infor. Sci., 12 (2018), 139–144.
- [16] A. A. Kilbas, H. M. Srivastava, and J. J. Trujillo, Theory and applications of fractional differential, North-Holland Mathematics Studies 204, 2006.
- [17] D. M. Lee, A. K. Rathie, R. K. Parmar, and Y. S. Kim, Generalization of extended beta function, hypergeometric and confluent hypergeometric functions, Honam Math. J., 33 (2011), 187–206.
- [18] F. Mainardi, Special functions with applications to mathematical physics, MDPI, 2023.
- [19] S. Mubeen, R. Rahman, K. S. Nisar, J. Choi, and M. Arshad, An extended beta function and its properties, Far East J. Math Sci. (FJMS), 102(7) (2017), 1545–1557.
- [20] E. O¨ zergin, M. A. O¨ zarslan, and A. Altın, Extension of gamma, beta and hypergeometric functions, J. Comput. Appl. Math., 235 (2011), 4601–4610.
- [21] R. K. Parmar, A new generalization of gamma, beta, hypergeometric and confluent hypergeometric functions, Le Matematiche, 68 (2013), 33–52.
- [22] P. I. Pucheta, An new extended beta function, Inter. J. Math. Appl., 5(3-C) (2017), 255–260.
- [23] G. Rahman, G. Kanwal, K. S. Nisar, and A. Ghaffar, A new extension of beta and hypergeometric functions, (2018), 1–16. doi:10.20944/preprints201801.0074.v1
- [24] G. Rahman, S. Mubeen, and K. S. Nisar, A new generalization of extended beta and hypergeometric functions, J. Frac. Calc. Appl., 11(2) (2020), 32–44.
- [25] M. Shadab, J. Saime, and J. Choi, An extended beta function and its applications, J. Math. Sci., 103 (2018), 235–251.
- [26] M. Sharma and R. Jain, A note on a generalized M-series as a special function of fractional calculus, Frac. Calc. Appl. Anal., 12(4) (2009), 449–452.
- [27] I. N. Sneddon, Special functions of mathematical physics and chemistry, Longman Mathematical Texts, 1980.
- [28] H. M. Srivastava, P. Agarwal, and S. Jain, Generating functions for the generalized Gauss hypergeometric func- tions, Appl. Math. Comput., 247 (2014), 348–352.
- [29] R. S¸ahin, O. Ya˘gcı, M. B. Ya˘gbasan, I˙. O. Kıymaz, and A. C¸ etinkaya, Further generalizations of gamma, beta and related functions, J. Ineq. Spec. Func., 9(4) (2018), 1–7.
|