تعداد نشریات | 43 |
تعداد شمارهها | 1,184 |
تعداد مقالات | 14,553 |
تعداد مشاهده مقاله | 49,929,866 |
تعداد دریافت فایل اصل مقاله | 13,135,688 |
Fractional Chebyshev differential equation on symmetric $\alpha$ dependent interval | ||
Computational Methods for Differential Equations | ||
مقالات آماده انتشار، پذیرفته شده، انتشار آنلاین از تاریخ 05 مرداد 1402 اصل مقاله (1.08 M) | ||
نوع مقاله: Research Paper | ||
شناسه دیجیتال (DOI): 10.22034/cmde.2023.54630.2275 | ||
نویسندگان | ||
Zahra Kavooci1؛ Kazem Ghanbari* 1، 2؛ Hanif Mirzaei1 | ||
1Faculty of Sciences, Sahand University of Technology, Tabriz, Iran. | ||
2School of Mathematics and Statistics, Carleton University, Ottawa, Canada. | ||
چکیده | ||
Most of fractional differntial equations are considered on a fixed interval. In this paper we consider a typical fractional differential equation on a symmetric interval $[-\alpha,\alpha]$, where $\alpha$ is the order of fractional derivative. For a positive real number $\alpha$ we prove that the solutions are $T_{n,\alpha}(x)=(\alpha+x)^\frac{1}{2}Q_{n,\alpha}(x)$, where $Q_{n,\alpha}(x)$ produce a family of orthogonal polynomials with respect to weight function $w_\alpha(x)=(\frac{\alpha+x}{\alpha-x})^{\frac{1}{2}}$ on $[-\alpha,\alpha]$. For integer case $\alpha=1$ we show that these polynomials coincide with classical Chebyshev polynomials of third kind. Orthogonal properties of the solutions leads to practical results in determining solutions of some fractional differential equations. | ||
کلیدواژهها | ||
Orthogonal Polynomials؛ Fractional Chebyshev differential equation؛ Riemann-Liouville and Caputo derivatives | ||
آمار تعداد مشاهده مقاله: 32 تعداد دریافت فایل اصل مقاله: 44 |