تعداد نشریات | 44 |
تعداد شمارهها | 1,306 |
تعداد مقالات | 15,997 |
تعداد مشاهده مقاله | 52,425,761 |
تعداد دریافت فایل اصل مقاله | 15,172,121 |
بررسی اثرات تنش خشکی و کود نیتروژن بر عملکرد، اجزای عملکرد و برخی ویژگیهای فیزیولوژیک گندم | ||
دانش کشاورزی وتولید پایدار | ||
دوره 33، شماره 2، تیر 1402، صفحه 49-60 اصل مقاله (1.04 M) | ||
نوع مقاله: مقاله پژوهشی | ||
شناسه دیجیتال (DOI): 10.22034/saps.2021.44393.2630 | ||
نویسندگان | ||
مهرداد محلوجی* 1؛ سیاوش برده جی2؛ سعید عمرانی2 | ||
1استادیار بخش تحقیقات علوم زراعی باغی، مرکزتحقیقات و آموزش کشاورزی و منابع طبیعی استان اصفهان، سازمان تحقیقات آموزش و ترویج کشاورزی، | ||
2دانشجو دکترای گروه زراعت و اصلاح نباتات، دانشگاه صنعتی اصفهان، اصفهان | ||
چکیده | ||
اهداف: این آزمایش بهمنظور بررسی اثرات تنش خشکی و کود نیتروژن بر عملکرد، اجزای عملکرد و برخی ویژگیهای فیزیولوژیک چهار رقم گندم انجام شد. مواد و روشها: آزمایش به صورت کرتهای دوبار خرد شده در قالب طرح بلوکهای کامل تصادفی در سه تکرار در مزرعه تحقیقاتی دانشگاهصنعتی اصفهان انجام شد. فاکتورهای آزمایش شامل دو رژیمآبیاری (آبیاری 100 و 50 درصد نیاز آبی گیاه بهترتیب برای شرایط بدونتنش و تنشخشکی)، دو سطح کودنیتروژن (مقدار موجود در خاک و استفاده از 150 کیلوگرم اوره در هکتار) و ارقام گندم (پیشتاز، بهار، سپاهان و استار) بود. یافتهها: تنش خشکی با کاهش محتوای کلروفیل a، b، کاروتنوییدها و محتوای نسبی آب برگ و همچنین افزایش میزان نشتیونی سبب کاهش معنیدار عملکرددانه و عملکردزیست توده شد. استفاده از نیتروژن در شرایط آبیاری بدون تنش، عملکرد دانه و عملکرد زیست توده را به طور معنیداری افزایش داد ولی در شرایط تنش خشکی سبب افزایش زیست توده و کاهش عملکرد دانه شد. در این آزمایش رقم پیشتاز بیشترین عملکرد دانه (4710 کیلوگرم در هکتار)، و رقم استار بیشترین میزان زیستتوده (11639 کیلوگرم در هکتار) را داشتند. همچنین بیشترین عملکرد دانه و زیست توده در کلیه ارقام در تیمار آبیاری بدونتنش و استفاده از نیتروژن مشاهده شد. نتیجهگیری: استفاده از نیتروژن جهت افزایش عملکرد وابسته به میزان آب در دسترس گیاه میباشد و در شرایط تنش خشکی استفاده از نیتروژن نه تنها راهکار مناسبی جهت کاهش تاثیر تنش و کاهش عملکرد ناشی از آن نیست بلکه سبب تشدید تنش و کاهش عملکرددانه در ارقام گندم مورد مطالعه شد. | ||
کلیدواژهها | ||
زیست توده؛ شاخص برداشت؛ عملکرد دانه؛ کلروفیل؛ نشت یونی | ||
مراجع | ||
Ahmadi A and Baker DA. 2001. The effect of water stress on the activities of key regulatory enzymes of the sucrose to starch pathway in wheat. Plant Growth Regulation, 35(1): 81-91.
Ahmadinezhad R, Najafi N, Aliasgharzad N and Oustan SH. 2012. Effects of Organic and Nitrogen Fertilizers on Water Use Efficiency, Yield and the Growth Characteristics of Wheat (Triticum aestivum cv. Alvand). Water and Soil Science, 2: 177-194. (In Persian).
Albrizio R, Todorovic M, Matic T and Stellacci AM. 2010. Comparing the interactive effects of water and nitrogen on durum wheat and barley grown in a Mediterranean environment. Field Crops Research, 115(2): 179-190.
Allen RG, Pereira LS, Raes D and Smith M. 1998. Crop evapotranspiration-Guidelines for computing crop water requirements-FAO Irrigation and drainage paper 56. FAO, Rome. 300(9): D05109.
Araya A, Habtu S, Hadgu KM, Kebede A and Dejene T. 2010. Test of AquaCrop model in simulating biomass and yield of water deficient and irrigated barley (Hordeum vulgare). Agricultural Water Management, 97(11): 1838-1846.
Arshadi A, Karami E, Khateri B and Rezabakhsh P. 2016. Drought stress effects on the grain yield among different barley cultivars. Genetika, 48(3): 1087-1100.
Assefa T, Rao IM, Cannon SB, Wu J, Gutema Z, Blair M, Otyama P, Alemayehu F and Dagne B. 2017. Improving adaptation to drought stress in white pea bean (Phaseolus vulgaris L.): Genotypic effects on grain yield, yield components and pod harvest index. Plant Breeding, 136(4): 548-561.
Assefa T, Wu J, Beebe SE, Rao IM, Marcomin D and Claude RJ. 2015. Improving adaptation to drought stress in small red common bean: phenotypic differences and predicted genotypic effects on grain yield, yield components and harvest index. Euphytica, 203(3): 477-489.
Bihamta M, Shirkavand M, Hasanpour J and Afzalifar A. 2018. Evaluation of Durum Wheat Genotypes under Normal Irrigation and Drought Stress Conditions. Journal of Crop Breeding, 9(24): 119-136. (In Persian).
Bista DR, Heckathorn SA, Jayawardena DM, Mishra S and Boldt JK. 2018. Effects of drought on nutrient uptake and the levels of nutrient-uptake proteins in roots of drought-sensitive and-tolerant grasses. Plants, 7(2): 28: 1-16.
Boroujerdnia M, Bihamta MR, Alemi S and Abdousi V. 2016. Effect of drought stress on proline content, soluble carbohydrates, electrolyte leakage and relative water content of beans (Phaseolus vulgaris L.). Plant Physiology, 29: 23-41. (In Persian)
Ercoli L, Lulli L, Mariotti M, Masoni A and Arduini I. 2008. Post-anthesis dry matter and nitrogen dynamics in durum wheat as affected by nitrogen supply and soil water availability. European Journal of Agronomy, 28(2): 138-147.
Hassegawa RH, Fonseca H, Fancelli AL, da Silva VN, Schammass EA, Reis TA and Corrêa B. 2008. Influence of macro-and micronutrient fertilization on fungal contamination and fumonisin production in corn grains. Food Control, 19(1): 36-43.
Kamkar B, Daneshmand AR, Ghooshchi F, Shiranirad AH and Langeroudi AS. 2011. The effects of irrigation regimes and nitrogen rates on some agronomic traits of canola under a semiarid environment. Agricultural Water Management, 98(6): 1005-1012.
Kaya C, Kirnak H, Higgs D and Saltali K. 2002. Supplementary calcium enhances plant growth and fruit yield in strawberry cultivars grown at high (NaCl) salinity. Scientia Horticulturae, 93(1): 65-74.
Khodaverdizadeh M, Mohammadi M and Miri D. 2019. Estimation of Technical Efficiency of Wheat Production with Emphasis on Sustainable Agriculture in Urmia County. Journal of Agricultural Science and Sustainable Production, 29(4): 233-245. (In Persian).
Lichtenthaler HK. 1987. Chlorophylls and carotenoids: pigments of photosynthetic biomembranes. Methods in Enzymology, 148: 350-382.
Lin S, Sattelmacher B, Kutzmutz E, Mühling KH and Dittert K. 2004. Influence of nitrogen nutrition on tuber quality of potato with special reference to the pathway of nitrate transport into tubers. Journal of Plant Nutrition, 27(2): 341-350.
Lonbani M and Arzani A. 2011. Morpho-physiological traits associated with terminal drought-stress tolerance in triticale and wheat. Agronomy Research, 9: 315–329.
Mahlooji M. 2021. Agrophysiological barley associated with flag leaf temperature and canopy light interception under salinity and zinc foliar application. Journal of Plant Process and Function, 10(43): 25-34.
Mahlooji M, seyedsharifi R, Razmjo J, Sabzalian MR and Sedghi M.2018. Effect of salt stress on photosynthesis and physiological parameters of three contrasting barley genotypes. Photosynthetica, 56 (2): 549-556.
Mohammadi Kashka F. Pirdashti H. Yaghoubian Y and Bakhshandeh E. 2017. Evaluation of growth and yield stability of wheat by application of trichoderma and enterobacter sp. Journal of Agricultural Science and Sustainable Production, 26(4): 1-15. (In Persian).
Omrani S, Arzani A, Esmaeilzadeh M and Mahlooji M. 2022. Genetic analysis of salinity tolerance in wheat (Triticum aestivum L.). PLoS ONE 17(3): e0265520.
Pirzad A, Shakiba MR, Zehtab-Salmasi S, Mohammadi SA, Darvishzadeh R and Samadi A. 2011. Effect of water stress on leaf relative water content, chlorophyll, proline and soluble carbohydrates in Matricaria chamomilla
.0 L. Journal of Medicinal Plants Research, 5(12): 2483-2488.
Plaut Z, Butow BJ, Blumenthal CS and Wrigley CW. 2004. Transport of dry matter into developing wheat kernels and its contribution to grain yield under post-anthesis water deficit and elevated temperature. Field Crops Research, 86(2-3): 185-198.
Prasad PVV, Staggenborg SA and Ristic Z. 2008. Impacts of drought and/or heat stress on physiological, developmental, growth, and yield processes of crop plants. Pp. 1: 301-355. In: Ahuja LR, Reddy VR, Saseendran SA and Qiang Yu (eds). Response of crops to limited water: Understanding and modeling water stress effects on plant growth processes. American Society of Agronomy and Soil Science Society of America.
Sayar R, Khemira H, Kameli A and Mosbahi M. 2008. Physiological tests as predictive appreciation for drought tolerance in durum wheat (Triticum durum Desf.). Agronomy Research, 6: 79-90.
Shahbazi H, Arzani A and Ismailzadeh Moghadam M. 2016. The effect of drought stress on physiological properties in recombinant wheat inbred lines. Plant Process and Function, 15: 123-131. (In Persian).
Sieling K, Schröder H, Finck M and Hanus H. 1998. Yield, N uptake, and apparent N-use efficiency of winter wheat and winter barley grown in different cropping systems. The Journal of Agricultural Science, 131(4): 375-387.
Sio-Se Mardeh A, Ahmadi A, Poustini K and Mohammadi V. 2006. Evaluation of drought resistance indices under various environmental conditions. Field Crops Research, 98: 222–229.
Tadayon MR and Imam Y. 2007. The effect of supplementary irrigation and nitrogen fertilizer on morphological reactions and grain yield of two wheat cultivars under rainfed conditions in Fars province. Journal of Agricultural Science, 2: 53-69. (In Persian).
Torres I, Sánchez MT, Benlloch-González M and Pérez-Marín D. 2019. Irrigation decision support based on leaf relative water content determination in olive grove using near infrared spectroscopy. Biosystems Engineering, 180: 50-58.
Van Herwaarden AF, Farquhar GD, Angus JF, Richards RA and Howe GN. 1998. 'Haying-off', the negative grain yield response of dryland wheat to nitrogen fertiliser. I. Biomass, grain yield, and water use. Australian Journal of Agricultural Research, 49: 1067-1082.
Wang X, Li Q, Xie J, Huang M, Cai J, Zhou Q, Dai T and Jiang D. 2020. Abscisic acid and jasmonic acid are involved in drought priming-induced tolerance to drought in wheat. The Crop Journal, 9(1): 120-132.
Zaidi PH, Srinivasan G, Cordova HS and Sanchez C. 2004. Gains from improvement for mid-season drought tolerance in tropical maize (Zea mays L.). Field Crops Research, 89(1): 135-152. | ||
آمار تعداد مشاهده مقاله: 271 تعداد دریافت فایل اصل مقاله: 293 |