- [1] Q. M. Al-Mdallal, M. I. Syam, and M. N. Anwar, A collocation-shooting method for solving fractional boundary value problems, Commun. Nonlinear Sci. Numer. Simul., 15 (2010), pp. 3814–3822.
- [2] D. A. Benson, S. W. Wheatcraft, and M. M. Meerschaert, Application of a fractional advection-dispersion equation, Water resources research, 36 (2000), pp. 1403–1412.
- [3] Z. Cen, J. Huang, and A. Xu, An efficient numerical method for a two-point boundary value problem with a Caputo fractional derivative, J. Comput. Appl. Math., 336 (2018), pp. 1–7.
- [4] Z. Cen, J. Huang, A. Xu, and A. Le, A modified integral discretization scheme for a two-point boundary value problem with a Caputo fractional derivative, J. Comput. Appl. Math., 367 (2020), pp. 112465, 10.
- [5] Z. Cen, L.-B. Liu, and J. Huang, A posteriori error estimation in maximum norm for a two-point boundary value problem with a Riemann-Liouville fractional derivative, Appl. Math. Lett., 102 (2020), pp. 106086, 8.
- [6] D. del Castillo-Negrete, Fractional diffusion models of nonlocal transport, Phys. Plasmas, 13 (2006), pp. 082308, 16.
- [7] K. Diethelm, and N. J. Ford, Volterra integral equations and fractional calculus: do neighboring solutions intersect?, J. Integral Equations Appl., 24 (2012), pp. 25–37.
- [8] K. Diethelm, and G. Walz, Numerical solution of fractional order differential equations by extrapolation, Numer. Algorithms, 16 (1997), pp. 231–253.
- [9] H. Fazli, F. Bahrami, and S. Shahmorad, Extremal solutions for multi-term nonlinear fractional differential equations with nonlinear boundary conditions, Computational Methods for Differential Equations, 11 (2023), pp. 32–41.
- [10] J. L. Gracia, E. O’Riordan, and M. Stynes, Convergence analysis of a finite difference scheme for a two-point boundary value problem with a Riemann-Liouville-Caputo fractional derivative, BIT, 60 (2020), pp. 411–439.
- [11] J. Huang, Z. Cen, L.-B. Liu, and J. Zhao, An efficient numerical method for a Riemann-Liouville two-point boundary value problem, Appl. Math. Lett., 103 (2020), pp. 106201, 8.
- [12] A. Jaishankar, and G. H. McKinley, Power-law rheology in the bulk and at the interface: quasi-properties and fractional constitutive equations, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 469 (2013), pp. 20120284, 18.
- [13] L. Jia, H. Chen, and V. J. Ervin, Existence and regularity of solutions to 1-D fractional order diffusion equations, Electron. J. Differential Equations, (2019), pp. 93, 21.
- [14] J. F. Kelly, H. Sankaranarayanan, and M. M. Meerschaert, Boundary conditions for two-sided fractional diffusion, J. Comput. Phys., 376 (2019), pp. 1089–1107.
- [15] R. L. Magin, Fractional calculus in bioengineering, vol. 2, Begell House Redding, 2006.
- [16] M. N. Oqielat, T. Eriqat, Z. Al-Zhour, A. El-Ajou, and S. Momani, Numerical solutions of time-fractional nonlinear water wave partial differential equation via caputo fractional derivative: an effective analytical method and some applications, Applied and Computational Mathematics, 21 (2022), pp. 207–222.
- [17] A. Panda, S. Santra, and J. Mohapatra, Adomian decomposition and homotopy perturbation method for the solution of time fractional partial integro-differential equations, J. Appl. Math. Comput., 68 (2022), pp. 2065– 2082.
- [18] P. Patie, and T. Simon, Intertwining certain fractional derivatives, Potential Anal., 36 (2012), pp. 569–587.
- [19] S. Santra, A. Panda, and J. Mohapatra, A novel approach for solving multi-term time fractional Volterra-Fredholm partial integro-differential equations, J. Appl. Math. Comput., 68 (2022), pp. 3545–3563.
- [20] M. A. Shallal, A. H. Taqi, H. N. Jabbar, H. Rezazadeh, B. F. Jumaa, A. Korkmaz, and A. Bekir, A numerical technique of the time fractional gas dynamics equation using finite element approach with cubic hermit element, Applied and Computational Mathematics, 21 (2022), pp. 269–278.
- [21] M. K. Shkhanukov, On the convergence of difference schemes for differential equations with a fractional derivative, Dokl. Akad. Nauk, 348 (1996), pp. 746–748.
- [22] M. K. Shkhanukov, A. A. Kerefov, and A. A. Berezovski˘ı, Boundary value problems for the heat equation with a fractional derivative in the boundary conditions, and difference methods for their numerical realization, Ukra¨ın. Mat. Zh., 45 (1993), pp. 1289–1298.
- [23] M. Waurick, Homogenization in fractional elasticity, SIAM J. Math. Anal., 46 (2014), pp. 1551–1576.
|