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Abstract

In this study, we numerically solve a class of two-point boundary-value-problems with a Riemann-Liouville-Caputo

fractional derivative, where the solution might contain a weak singularity. Using the shooting technique based
on the secant iterative approach, the boundary value problem is first transformed into an initial value problem,

and the initial value problem is then converted into an analogous integral equation. The functions contained

in the fractional integral are finally approximated using linear interpolation. An adaptive mesh is produced by
equidistributing a monitor function in order to capture the singularity of the solution. A modified Gronwall

inequality is used to establish the stability of the numerical scheme. To show the effectiveness of the suggested

approach over an equidistributed grid, two numerical examples are provided.
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1. Introduction

Any positive order integrals and derivatives are permitted in fractional calculus, the term fractional is kept only
for historical reasons. In recent decades, it has become increasingly popular and significant across a range of science
and engineering sectors. It appears in various fields such as elasticity [23], rheology [12], quantitative biology [15],
porous or fractured media [2], transport theory [6], etc. The Riemann-Liouville-Caputo (RLC) fractional derivative
[10, 13], also known as the Patie-Simon fractional derivative [14, 18], was first introduced by Pierre Patie and Thomas
Simon in the study of asymmetric α-stable Lévy processes. This derivative is used as the infinitesimal generator of
the spectrally positive (resp. spectrally negative) α-stable Lévy process reflected at its running supremum.

This article analyzes the following class of steady-state fractional boundary-value-problems (BVPs) with the highest
order derivative of RLC fractional type:{ −Dα

RLCu(t) + (bu)′(t) + (cu)(t) = f(t), t ∈ Ω = (0, T ),

Dα−1
C u(0) = γ, u(T ) + β1u

′(T ) = γ1,
(1.1)

where the functions b, c, f satisfy (1.3) and the constants β1 ≥ 0, γ, γ1 ≥ 0 are given, and for 1 < α < 2,

Dα
RLCu(t) :=

d

dt

(
Dα−1
C u(t)

)
=

d

dt

 t∫
s=0

(t− s)1−αu′(s)

Γ(2− α)
ds

 , t > 0. (1.2)

For each positive integer r and −∞ < µ < 1, let us define the space

Cr,µ(0, T ] := {y ∈ C(Ω) : y(r) ∈ C(0, T ] with ‖y‖r,µ <∞},
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where

‖y‖r,µ := sup
0<t≤T

|y(t)|+
r∑
i=1

sup
0<t≤T

[ti−(1−µ)|y(i)(t)|],

and Cn(Ω) is the space of n times continuously differentiable functions defined on Ω.
We assume that for r ∈ Z+ and some ν ∈ (−∞, 1),

b, c, f ∈ Cr,ν(0, T ], c+ b′ ≥ 0, (1.3)

and under the assumptions given in (1.3), the solution u to the problem (1.1) exists.
Gracia et al. [10], in their study of the BVP (1.1) with Dα−1

C u(0) = 0, noted that Dα−1
C u(0) 6= 0 may result in

singularity in the problem’s solution. We have employed an adaptive grid based on grid equidistribution with a length
curve monitor function to overcome the singularity in the numerical solution. Here, the key concept behind using this
equidistribution grid for numerical solution is that there should be more grid points where the singularity occurs in
the solution curve than other locations in the domain in order to increase the accuracy of the numerical solution.

Definition 1.1. The Riemann-Liouville fractional integral of order β ≥ 0 for any function f ∈ Lp(a, b) (1 ≤ p ≤ ∞)
is defined by

(Iβt f)(t) =
1

Γ(β)

t∫
a

(t− s)β−1f(s)ds, t > a,

and the Riemann-Liouville fractional derivative of order ω ∈ (0, 1) for any function f ∈ AC[a, b] (the space of functions
which are absolutely continuous on [a, b]), is defined by

Dω
RLf(t) =

d

dt

(
I1−ω
t f

)
(t) =

1

Γ(1− ω)

d

dt

 t∫
a

(t− s)−ωf(s)ds

 .

The finite difference approach was most likely first used to examine the heat conduction equation with fractional
derivative and boundary condition by Shkhanukov et al. [22]. Shkhanukov proposed the finite difference approach
for Dirichlet BVP for ordinary differential equations (ODEs) with Riemann-Liouville fractional derivative in [21].
An extrapolation method was devised by Diethelm and Walz [8] to solve ordinary differential equations numerically
using the so-called Caputo fractional derivative. Panda et al. [17] studied the Adomian decomposition method and
Homotopy perturbation method for solving time-fractional partial integro-differential equation. Santra et al. [19]
developed a novel approach for solving multi-term time fractional partial integro-differential equations. Oqielat et
al. [16] studied numerical solution technique for time-fractional nonlinear water wave partial differential equation.
Extremal solutions for multi-term nonlinear fractional differential equations are obtained in Fazli et al. [9]. Shallal et
al. [20] established a numerical technique for the time-fractional gas dynamics equation using a finite element approach
with cubic hermit element.

We suggest a numerical approach to solve the BVP (1.1) in this article. More specifically, first, we translate the BVP
into an equivalent initial-value-problem (IVP) by using the shooting technique. The IVP is afterward transformed into
an equivalent integral equation. Then, using an adaptive mesh (by equidistributing a monitor function), we accurately
approximate the integral equation. The process is then repeated with the initial condition modified until the solution
satisfies the required right boundary condition with the desired accuracy. Using a modified Gronwall inequality, we
establish the discrete stability of the proposed method. The effectiveness and accuracy of the current method are
illustrated by numerical examples.

The rest of the paper is organized as follows: we propose the numerical method for solving the BVP (1.1) over an
equidistributed grid in section 2. Section 3 deals with the stability estimate of the proposed scheme. Finally, numerical
experiments are carried out in section 4.
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2. Proposed Numerical Method

In this section, we will discuss some sequential approximation methods for solving the BVP numerically instead of
solving it analytically.

2.1. Shooting Technique. First, by using the shooting technique, we convert the given BVP (1.1) into the following
IVP: {

−Dα
RLCu(t) + (bu)′(t) + (cu)(t) = f(t), t ∈ Ω,

u(0) = η, Dα−1
C u(0) = γ,

(2.1)

where η is an initial guess that will be modified to ensure that the solution fulfills the given condition at t = T , i.e.,
u(T ) + β1u

′(T ) = γ1. The secant iterative method serves as the foundation of this shooting technique.
In the literature, the shooting method was applied to solve the fractional BVPs, for example, one can refer to

Diethelm and Ford [7], Al-Mdallal et al. [1], Huang et al. [11] and Cen et al. [3–5].
Instead of solving (2.1) directly, we will transform it into an equivalent integral equation, by assuming some

regularity condition on u. The following theorem yields the equivalence of the equation (2.1) and an integral equation.

Theorem 2.1. Let us assume the conditions given in (1.3) hold true. If u ∈ C1(Ω), then u(t) satisfies the equation
(2.1) if, and only if, u(t) satisfies the Volterra integral equation with a weakly singular kernel:

u(t) = u(0) +

(
Dα−1
C u(0)− b(0)u(0)

Γ(α)

)
tα−1 +

1

Γ(α− 1)

t∫
0

(t− s)α−2(bu)(s)ds

+
1

Γ(α)

t∫
0

(t− s)α−1(cu− f)(s)ds, t ∈ Ω,

u(0) = η, Dα−1
C u(0) = γ.

(2.2)

In general, it is quite difficult to find out the exact value of η, we have to look at some approximation method for
finding η in such a way that u(T ; η) + β1u

′(T ; η)− γ1 = 0, where u(t; η) be the solution of (2.2) for each u(0) = η. We
use the secant method to compute η iteratively, by finding the solution of φ(η) = 0, where

φ(η) = u(T ; η) + β1u
′(T ; η)− γ1. (2.3)

First, we take some initial values η0 and η1, and iteratively compute ηi (i ≥ 2) as

ηi+1 = ηi −
ηi − ηi−1

φ(ηi)− φ(ηi−1)
φ(ηi), i ≥ 1. (2.4)

Let εi = ηi − η be the error due to this secant method, where η is such that φ(η) = 0 and ηi is defined in (2.4).
Then by a simple calculation, one can show that

εi+1 = −1

2

φ′′(ξi)

φ′(ξ′i)
εiεi−1, ξi ∈ int(η, ηi−1, ηi) and ξ′i ∈ int(ηi−1, ηi), (2.5)

where int(a, b) = the interval formed by a and b and int(a, b, c) = the interval formed by a, b and c.
In the following theorem, we will show the convergence of the shooting method.

Theorem 2.2. Let us consider the conditions given in (1.3). Then the function φ defined by equation (2.3) satisfies
the following:∣∣∣∣φ′′(ξi)φ′(ξ′i)

∣∣∣∣ ≤ C, (2.6)

and hence the Secant method is convergent, i.e., ηi → u(0) with the order of convergence 1.618.
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2.2. Discretization Scheme. A nonuniform mesh with the discretization parameter N being a positive integer is
defined as ΩN = {0 = t0 < t1 < · · · < tN = T}. Let τi = ti − ti−1, for i = 1, · · · , N and τ̂ = max

i
τi. Then, in order to

approximate the problem (2.2), the following integral discretization technique is employed:

uNk ≈ u(0) +
Dα−1
C u(0)− b(0)u(0)

Γ(α)
tα−1
k +

k∑
i=1

ti∫
ti−1

(tk − s)α−2

Γ(α− 1)

[
ti − s
τi

bi−1u
N
i−1 +

s− ti−1

τi
biu

N
i

]
ds

+
1

Γ(α)

k∑
i=1

ti∫
ti−1

(tk − s)α−1

[
ti − s
τi

(ci−1u
N
i−1 − fi−1) +

s− ti−1

τi
(ciu

N
i − fi)

]
ds

= η +
γ − ηb0

Γ(α)
tα−1
k +

k∑
i=1

bi−1u
N
i−1

[
ψα−1
k,i−1

Γ(α)
−
ψαk,i−1 − ψαk,i
τiΓ(α+ 1)

]
+

k∑
i=1

biu
N
i

[
ψαk,i−1 − ψαk,i
τiΓ(α+ 1)

−
ψα−1
k,i

Γ(α)

]

+

k∑
i=1

(ci−1u
N
i−1 − fi−1)

[
ψαk,i−1

Γ(α+ 1)
−
ψα+1
k,i−1 − ψ

α+1
k,i

τiΓ(α+ 2)

]

+

k∑
i=1

(ciu
N
i − fi)

[
ψα+1
k,i−1 − ψ

α+1
k,i

τiΓ(α+ 2)
−

ψαk,i
Γ(α+ 1)

]
, (2.7)

where, ψαi,k = (tk − ti)α and k = 1, 2, · · · , N.
To create an adapted mesh, we develop a solution-adapted algorithm. We employ the notion of equidistribution of

a specified positive monitor function, M(t) =
√

1 + [(ûN (t))′]2, to obtain such a mesh, where ûN (t) is continuous on
[0, T ], linear on every [tk−1, tk], and

ûN (t) = uNk + (t− tk)
uNk − uNk−1

τk
, t ∈ (tk−1, tk), k = 1, 2, · · · , N.

By figuring out the following equidistribution problem, an adapted mesh can be generated:

Mkτk =
1

N

N∑
j=1

Mjτj , k = 1, · · · , N.

We develop the subsequent iteration algorithm to address the aforementioned equidistribution problem:

3. Discrete stability estimate

By using the generalized discrete Gronwall inequality, which will be given in the following lemma, we perform a
discrete stability analysis of the discretization scheme (2.7) of the computed solution in this section.

Lemma 3.1. (Generalized discrete Gronwall inequality, [11])
Assume that µ,D0 are positive constants. Let g0 be positive and the sequence {φi}Ni=0 satisfy

φ0 ≤ g0,

φi ≤
i−1∑
k=0

ak,iφk + g0,
(3.1)

where, a0,i = D0τ1t
µ−1
i , ak,i = D0τk+1(ti − tk)µ−1 or ak,i = D0τk(ti − tk−1)µ−1 for k ≥ 1 with τk = tk − tk−1,

then φi ≤ D0g0, i = 1, 2, · · · , N.

In the next lemma, we present the stability analysis of the discrete scheme (2.7) on the mesh ΩN .
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Numerical Algorithm

Let C0 be a chosen constant by the user, where C0 > 1.
Set the maximum number (N∞) of iterations allowed in the equidistribution loop.

Initialize the mesh by using the uniform mesh Ω
(0)

N = {t(0)
k : t

(0)
k = Tk/N, 0 ≤ k ≤ N} as the starting point.

for j = 0 to N∞ (Equidistribution Iteration) do

On the mesh Ω
(j)

N = {t(j)k : 0 ≤ k ≤ N} with mesh size τ
(j)
k = t

(j)
k − t

(j)
k−1, resolve the discrete problem (2.7)

for {uN,(j)k : 0 ≤ k ≤ N}.

Set

`
(j)
k = τ

(j)
k

√√√√1 +

(
u
N,(j)
k − uN,(j)k−1

τ
(j)
k

)2

, I(j) =

N∑
k=1

`
(j)
k .

If the iteration algorithm’s termination criterion is max
1≤k≤N

{`(j)k } < C0I
(j)/N is satisfied then break the

iteration.

Develop a new mesh Ω
(j+1)

N in such a way that

τ
(j+1)
k

√√√√1 +

(
u
N,(j)
k − uN,(j)k−1

τ
(j)
k

)2

= I(j)/N, k = 1, 2, · · · , N.

end

Take Ω
∗
N = Ω

(j)

N as the final mesh and set {uN,∗k : 0 ≤ k ≤ N} = {uN,(j)k : 0 ≤ k ≤ N}.

Set {uN,∗k : 0 ≤ k ≤ N} as the required solution at the final time step.

Lemma 3.2. (Discrete stability estimate)
Assume the conditions given in (1.3) are true. Let {uNi }Ni=0 be the solution of the scheme (2.7) on an arbitrary mesh
ΩN . Then {uNi }Ni=0 satisfies

‖uN‖ΩN ≤ C(|η|+ |γ|+ ‖f‖ΩN ),

where, C is a positive constant and ‖ · ‖ΩN is the discrete maximum norm over ΩN .

Proof. From (2.7), we have


|uN1 | ≤ d1ρ1,

|uNk | ≤ dk|ρk|+ dk
k−1∑
i=1

wi,ku
N
i , k = 2, · · · , N,

(3.2)
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where, for 1 ≤ k ≤ N, ψαi,k = (tk − ti)α,

dk =

∣∣∣∣1− τα−1
k bk

Γ(α+ 1)
− ταk ck

Γ(α+ 2)

∣∣∣∣−1

, (3.3)

ρk = η +
γ − b0η

Γ(α)
tα−1
k − fkτ

α
k

Γ(α+ 2)
+

b0η

Γ(α)

[
ψα−1
k,0 −

ψαk,0 − ψαk,1
ατ1

]
+
c0η − f0

Γ(α+ 1)

[
ψαk,0 −

ψα+1
k,0 − ψ

α+1
k,1

(α+ 1)τ1

]
−
k−1∑
i=1

fi
Γ(α+ 2)

[
ψα+1
k,i−1 − ψ

α+1
k,i

τi
−
ψα+1
k,i − ψ

α+1
k,i+1

τi+1

]
, (3.4)

and for 2 ≤ k ≤ N, 1 ≤ i ≤ k − 1,

wi,k =
bi

Γ(α+ 1)

[
ψαk,i−1 − ψαk,i

τi
−
ψαk,i − ψαk,i+1

τi+1

]
+

ci
Γ(α+ 2)

[
ψα+1
k,i−1 − ψ

α+1
k,i

τi
−
ψα+1
k,i − ψ

α+1
k,i+1

τi+1

]
. (3.5)

Now by using the mean-value theorem, we have

|ρk| ≤ |η|+ |γ|+ |b0||η|
Γ(α)

|tk|α−1 +
|fk|ταk

Γ(α+ 2)
+
|b0||η|

Γ(α− 1)
τ1(tk − t1)α−2

+
|c0||η|+ |f0|

Γ(α)
(tk − t1)α−1τ1 +

k−1∑
i=1

|fi|
Γ(α)

(tk − ti−1)α−1(τi + τi+1)

≤ C(|η|+ |γ|+ ‖f‖ΩN ), (3.6)

where C is a constant, and from (3.5), we have

wi,k ≤
‖b‖ΩN
Γ(α)

[
(tk − ti−1)α−1 − (tk − ti+1)α−1

]
+
‖c‖ΩN

Γ(α+ 1)
[(tk − ti−1)α − (tk − ti+1)α] . (3.7)

By using the assumptions on b and c given in (1.3), for some positive constant C1 and sufficiently large N , we have

|dk| ≤
∣∣∣∣1− ‖b‖ΩNΓ(α)

τ̂α−1 −
‖c‖ΩN

Γ(α+ 1)
τ̂α
∣∣∣∣−1

≤ C1. (3.8)

Case 1: For the case τi ≤ τi+1 with tk − ti ≥ 2τi+1, from (3.7) we have

wi,k ≤
‖b‖ΩN

Γ(α− 1)
(tk − ti+1)α−2(τi + τi+1) +

‖c‖ΩN
Γ(α)

(tk − ti−1)α−1(τi + τi+1)

≤
2‖b‖ΩN

Γ(α− 1)
τi+1(tk − ti+1)α−2 +

2‖c‖ΩN
Γ(α)

τi+1(tk − ti−1)α−1

≤ Cτi+1(tk − ti)α−2, (3.9)

where, we have used the mean-value theorem and the fact(
tk − ti+1

tk − ti

)α−2

=

(
1 +

τi+1

tk − ti+1

)2−α

≤
(

3

2

)2−α

.
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Case 2: For the case τi ≤ τi+1 with tk − ti < 2τi+1, from (3.7) we have

wi,k ≤
‖b‖ΩN
Γ(α)

(tk − ti−1)α−1 +
‖c‖ΩN

Γ(α+ 1)
(tk − ti−1)α

≤
‖b‖ΩN
Γ(α)

(tk − ti + τi+1)α−1 +
‖c‖ΩN

Γ(α+ 1)
(tk − ti + τi+1)α

<
3α−1‖b‖ΩN

Γ(α)
τα−1
i+1 +

3α‖c‖ΩN
Γ(α+ 1)

ταi+1

<

(
3α−1‖b‖ΩN

Γ(α)
+

3αL‖c‖ΩN
Γ(α+ 1)

)
22−ατi+1(tk − ti)α−2

≤ Cτi+1(tk − ti)α−2. (3.10)

Case 3: For the case τi > τi+1 with tk − ti ≥ 2τi, from (3.7) we have

wi,k ≤
‖b‖ΩN

Γ(α− 1)
(tk − ti+1)α−2(τi + τi+1) +

‖c‖ΩN
Γ(α)

(tk − ti−1)α−1(τi + τi+1)

<
2‖b‖ΩN

Γ(α− 1)
τi(tk − ti+1)α−2 +

2‖c‖ΩN
Γ(α)

τi(tk − ti−1)α−1

≤ Cτi(tk − ti−1)α−2, (3.11)

where, we have used the mean-value theorem and the fact(
tk − ti+1

tk − ti−1

)α−2

=

(
1 +

τi+1

tk − ti+1

)2−α(
1 +

τi
tk − ti

)2−α

≤
(

3

2

)4−2α

. (3.12)

Case 4: For the case τi > τi+1 with tk − ti < 2τi, from (3.7) we have

wi,k ≤
‖b‖ΩN
Γ(α)

(tk − ti−1)α−1 +
‖c‖ΩN

Γ(α+ 1)
(tk − ti−1)α

=
‖b‖ΩN
Γ(α)

(tk − ti + τi)
α−1 +

‖c‖ΩN
Γ(α+ 1)

(tk − ti + τi)
α

<
3α−1‖b‖ΩN

Γ(α)
τα−1
i +

3α‖c‖ΩN
Γ(α+ 1)

ταi

<

(
3‖b‖ΩN

Γ(α)
+

9L‖c‖ΩN
Γ(α+ 1)

)
τi(tk − ti−1)α−2

≤ Cτi(tk − ti−1)α−2. (3.13)

Thus, by using the Lemma 3.1 in (3.2) combined with the estimations (3.6)-(3.13), we are able to get the required
result. �

Remark 3.3. A rigorous analysis to determine the convergence order will be very difficult to carry out because of
the nature of adaptive grids. We can conclude that the suggested numerical method maintains its convergence features
based on the results of next section.
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4. Numerical Experiments

This section provides the efficiency of the proposed method over an equidistributed grid by experimenting with two
numerical test problems with numerical results.

Example 4.1. Consider the following problem for 1 < α < 2:

{ −Dα
RLCu(t) + u(t) = f(t), t ∈ (0, 1),

CDα−1
0 u(0) = −Γ(α), u(1) = 3.

(4.1)

The source term f(t) in (4.1) is chosen in such a way that the solution to this problem is u(t) = −tα−1 + 3t
α+7
2 + t8.

The maximum error in {uNj }Nj=0 and the order of convergence are respectively determined by

EN := ‖uN − u‖ΩN = max
0≤j≤N

|uNj − u(x(j))|, pN := log2

(
EN
E2N

)
.

From Figure 1 (a) and Figure 2 (a), one can observe that the solution of Example 4.1 has singularities at the
boundary points, which will be resolved by the equidistributed grid. In Figure 1 (b) and Figure 2 (b), we have shown
the grid distribution over the domain for Example 4.1. Figure 3 displays the error and log-log plot for Example 4.1
for various values of α. Table 1 and Table 2 show the maximum error and order convergence for Example 4.1 of the
proposed method over the uniform grid and equidistributed grid, respectively, from where one can observe that the
proposed method is more efficient over the equidistributed grid than over the uniform grid.
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Figure 1. Solutions and equidistributed grid for Example 4.1 with α = 1.2 and N = 64.
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Figure 2. Solutions and equidistributed grid for Example 4.1 with α = 1.6 and N = 64.
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Figure 3. Plots of errors to the Example 4.1 with α = 1.2 and N = 64.
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Table 1. Numerical results for Example 4.1 over uniform grid.
α ↓ N → 32 64 128 256 512 1024
1.2 EN 1.340e-03 7.086e-04 3.712e-04 1.930e-04 9.972e-05 5.126e-05

pN 0.9187 0.9326 0.9437 0.9527 0.9600
1.4 EN 1.814e-03 9.311e-04 4.748e-04 2.409e-04 1.218e-04 6.141e-05

pN 0.9619 0.9716 0.9788 0.9841 0.9880
1.6 EN 1.882e-03 9.514e-04 4.793e-04 2.408e-04 1.208e-04 6.053e-05

pN 0.9839 0.9893 0.9929 0.9953 0.9969
1.8 EN 1.715e-03 8.607e-04 4.313e-04 2.159e-04 1.081e-04 5.405e-05

pN 0.9948 0.9969 0.9981 0.9989 0.9993

Table 2. Numerical results for Example 4.1 over equidistribution grid.
α ↓ N → 32 64 128 256 512 1024
1.2 EN 1.829e-02 4.557e-03 1.139e-03 2.847e-04 7.119e-05 1.780e-05

pN 2.0052 2.0003 2.0000 2.0000 2.0000
1.4 EN 2.069e-02 5.142e-03 1.286e-03 3.213e-04 8.034e-05 2.009e-05

pN 2.0084 1.9997 2.0003 1.9999 2.0000
1.6 EN 2.377e-02 5.935e-03 1.484e-03 3.709e-04 9.273e-05 2.318e-05

pN 2.0018 1.9994 2.0005 2.0001 2.0000
1.8 EN 2.785e-02 7.008e-03 1.751e-03 4.376e-04 1.094e-04 2.735e-05

pN 1.9909 2.0010 2.0004 2.0001 2.0000

Example 4.2. Consider the following problem for 1 < α < 2:{ −Dα
RLCu(t) + 3tu(t) = 1, t ∈ (0, 1),

CDα−1
0 u(0) = 0, u(1) = 0.

(4.2)

The exact solution of Equation (4.2) is unknown, therefore, we use the two-mesh principle to estimate the maximum
two-mesh differences and order of convergence. Let {uNk }Nk=0 and {v2N

k }2Nk=0 are computed solutions of the equation
(4.2) on the meshes {tk}Nk=0 and {yk}2Nk=0 respectively, where {yk}2Nk=0 is constructed by bisecting the interval in {tk}Nk=0.
The maximum two-mesh differences DN and the order of convergence qN are respectively calculated by

DN := max
0≤j≤N

|uNj − v2N
j | and qN := log2

(
DN

D2N

)
.

The maximum two-mesh differences and order convergence of the method given in [10] over the uniform grid and
the proposed method over the equidistributed grid for Example 4.2 are given in Tables 3 and 4, respectively.

Table 3. Numerical results for Example 4.2 with method given in [10].
α ↓ N → 16 32 64 128 256 512
1.2 DN 2.5339e-02 1.2925e-02 6.5306e-03 3.2836e-03 1.6467e-03 8.2471e-04

qN 0.9713 0.9848 0.9919 0.9957 0.9977
1.4 DN 2.3763e-02 1.2262e-02 6.2453e-03 3.1572e-03 1.5892e-03 7.9786e-04

qN 0.9546 0.9733 0.9841 0.9904 0.9941
1.6 DN 2.1316e-02 1.1138e-02 5.7355e-03 2.9261e-03 1.4839e-03 7.4948e-04

qN 0.9364 0.9576 0.9709 0.9796 0.9854
1.8 DN 1.7693e-02 9.2971e-03 4.8284e-03 2.4876e-03 1.2744e-03 6.5015e-04

qN 0.9284 0.9452 0.9568 0.9649 0.9710
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Table 4. Numerical results for Example 4.2 over equidistribution grid with the present method.
α ↓ N → 16 32 64 128 256 512
1.2 DN 8.4231e-03 2.0812e-03 5.1825e-04 1.2938e-04 3.2326e-05 8.0796e-06

qN 2.0169 2.0057 2.0021 2.0008 2.0003
1.4 DN 3.5419e-03 8.7702e-04 2.1858e-04 5.4592e-05 1.3643e-05 3.4104e-06

qN 2.0138 2.0044 2.0014 2.0005 2.0002
1.6 DN 1.7200e-03 4.2726e-04 1.0662e-04 2.6641e-05 6.6591e-06 1.6647e-06

qN 2.0093 2.0026 2.0008 2.0002 2.0001
1.8 DN 9.0986e-04 2.2650e-04 5.6562e-05 1.4136e-05 3.5338e-06 8.8343e-07

qN 2.0061 2.0016 2.0004 2.0001 2.0000

5. Conclusions

In this paper, we have solved a two-point boundary-value problem with the highest order RLC fractional derivative,
by using a shooting technique based on secant method and transforming it into an integral equation. We established the
stability of the proposed numerical scheme by using a modified Gronwall inequality. The numerical results demonstrate
the efficiency and accuracy of the present method with an equidistribution grid over the uniform grid.
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