- [1] M. N. Alam and X. Li, Exact traveling wave solutions to higher order nonlinear equations, J. Ocean Eng. Sci., 4(3) (2019), 276–288.
- [2] M. Y. Ali, M. G. Hafez, M. K. H. Chowdury, and M. T. Akter, Analytical and traveling wave solutions to the fifth order standard Sawada-Kotera equation via the generalized exp(−Φ(ξ))-expansion method, J. Appl. Math. Phys., 4(2) (2016), 262–271.
- [3] N. H. Aljahdaly, Some applications of the modified (G0/G2)-expansion method in mathematical physics, Results Phys., 13 (2019), 102272.
- [4] H. Alotaibi, Explore Optical Solitary Wave Solutions of the KP Equation by Recent Approaches, Crystals, 12(2) (2022), 159.
- [5] N. A. Alzaid and B. A. Alrayiqi, Approximate solution method of the seventh order KdV equations by decomposition method, J. Appl. Math. Phys., 7 (2019), 2148–2155.
- [6] M. Areshi, A. Khan, R. Shah, and K. Nonlaopon, Analytical investigation of fractional-order Newell-WhiteheadSegel equations via a novel transform, AIMS Mathematics, 7(4) (2022), 6936–6958.
- [7] M. Arshad, A. R. Seadawy, and D. Lu, Study of soliton solutions of higher-order nonlinear Schr¨odinger dynamical model with derivative non-Kerr nonlinear terms and modulation instability analysis, Results Phys., 13 (2019), 102305.
- [8] S. S. Band, I. Al-Shourbaji, H. Karami, S. Karimi, J. Esfandiari, and A. Mosavi, Combination of group method of data handling (GMDH) and computational fluid dynamics (CFD) for prediction of velocity in channel intake, Appl. Sci., 10(21) (2020), 7521.
- [9] A. Chauhan and R. Arora, Some exact solutions of (1+1)-dimensional Kaup-system and seventh-order Kawahara equation, Malaya J. Math., 8(1) (2020), 151–158.
- [10] B. R. Duffy and E. J. Parkes, Travelling solitary wave solutions to a seventh-order generalized KdV equation, Phys. Lett. A, 214(5–6) (1996), 271–272.
- [11] F. Ferdous, M. G. Hafez, and M. Y. Ali, Obliquely propagating wave solutions to conformable time fractional extended Zakharov–Kuzetsov equation via the generalized exp(−Φ(ξ))-expansion method, SeMA J., 76 (2018), 109–122.
- [12] F. Ferdous, M. G. Hafez, A. Biswas, M. Ekici, Q. Zhou, M. Alfiras, S. P. Moshokoa, and M. Belic, Oblique resonant optical solitons with Kerr and parabolic law nonlinearities and fractional temporal evolution by generalized exp(−Φ(ξ))-expansion, Optik, 178 (2019), 439–448.
- [13] Foyjonnesa, N. H. M. Shahen, and M. M. Rahman, Dispersive solitary wave structures with MI Analysis to the unidirectional DGH equation via the unified method, Partial Differ. Equ. Appl. Math., 6 (2022), 100444.
- [14] B. Ghanbari and K. S. Nisar, Determining new soliton solutions for a generalized nonlinear evolution equation using an effective analytical method, Ain Shams Eng. J., 59(5) (2020), 3171–3179.
- [15] M. G. Hafez and M. A. Akbar, An exponential expansion method and its application to the strain wave equation in microstructured solids, Ain Shams Eng. J., 6(2) (2015), 683–690.
- [16] M. G. Hafez and D. Lu, Traveling wave solutions for space-time fractional nonlinear evolution equations, (2015), 17 pages. http://arxiv.org/abs/1512.00715
- [17] R. Hedli and A. Kadem, Exact traveling wave solutions to the fifth-order KdV equation using the exponential expansion method, IAENG Int. J. Appl. Math., 50(1) (2020), 121–126.
- [18] O. A. Ilhan, A. Esen, H. Bulut, and H. M. Baskonus, Singular solitons in the pseudo-parabolic model arising in nonlinear surface waves, Results Phys., 12 (2019), 1712–1715.
- [19] A. Irshad, S.T. Mohyud-Din, N. Ahmed, and U. Khan, A new modification in simple equation method and its applications on nonlinear equations of physical nature, Results Phys., 7 (2017), 4232–4240.
- [20] S. Kaewta, S. Sirisubtaweee,S. Koonprasert, and S. Sungnul, Applications of the (G0/G2)-expansion method for solving certain nonlinear conformable evolution equations, Fractal Fract., 5(3) (2021), 8.
- [21] U. Khan, A. Irshad, N. Ahmed, and S. T. Mohyud-Din, Improved tan -expansion method for (2 + 1)dimensional KP–BBM wave equation, Opt. Quant. Electron., 50 (2018), 135.
- [22] N. A. Kudryashov, The Painlev´e approach for finding solitary wave solutions of nonlinear nonintegrable differential equations, Optik, 183 (2019), 642–649.
- [23] V. S. Kumar, H. Rezazadeh, M. Eslami, F. Izadi, and M. S. Osman, Jacobi elliptic function expansion method for solving KdV equation with conformable derivative and dual-power law nonlinearity, Int. J. Appl. Comput. Math., 5 (2019), 127.
- [24] M. Lakestani, J. Manafian, A. R. Najafizadeh, and M. Partohaghighi, Some new soliton solutions for the nonlinear the fifth-order integrable equations, Comput. Methods Differ. Equ., 10 (2) (2022), 445–460.
- [25] Z. Li, T. Han, and C. Huang, Bifurcation and new exact traveling wave solutions for time-space fractional Phi-4 equation, AIP Advances, 10 (2020), 115113.
- [26] D. Lu and M. Ye, Traveling wave solutions for the nonlinear fractional Sharma-Tasso-Olever equation, Int. J. Math. Res., 6(1) (2017), 36–45.
- [27] D. Lu, C. Yue, and M. Arshad, Traveling wave solutions of space-time fractional generalized fifth-order KdV equation, Adv. Math. Phys., (2017), 6743276, 6 pages.
- [28] W. Ma, Travelling wave solutions to a seventh-order generalized KdV equation, Phys. Lett. A, 180(3) (1993), 221–224.
- [29] J. Manafian, Optical solitons in a power-law media with fourth order dispersion by three integration methods, Cogent math. stat., 5(1) (2018), 1434924.
- [30] S. C. Mancas and W. A. Hereman, Traveling wave solutions to fifth- and seventh-order Korteweg–de Vries equations: Sech and Cn solutions, J. Phys. Soc. Japan., 87 (2018), 114002.
- [31] M. Mirzazadeh, M. Eslami, and A. H. Arnous, Dark optical solitons of Biswas-Milovic equation with dual-power law nonlinearity, Eur. Phys. J. Plus, 130(4) (2015), 114002.
- [32] S. T. Mohyud-Din, M. A. Noor, and K. I. Noor, Traveling wave solutions of seventh-order generalized KdV equations using He’s polynomials, Int. J. Nonlinear Sci. Numer. Simul., 10(2) (2009), 227–233.
- [33] A. Molajou, V. Nourani, A. Afshar, M. Khosravi, and A. Brysiewicz, Optimal design and feature selection by genetic algorithm for emotional artificial neural network (EANN) in Rainfall-Runoff modeling, Water Resour. Manage., 35 (2021), 2369–2384.
- [34] E. J. Parkes, Z. Zhu, B. R. Duffy, and H. Huang, Sech-polynomial travelling solitary-wave solutions of odd-order generalized KdV equations, Phys. Lett. A, 248(2–4) (1998), 219–224.
- [35] Y. Pomeau, A. Ramani, and B. Grammaticos, Structural stability of the Korteweg-de Vries solitons under a singular perturbation, Physica D, 31(1) (1988), 127–134.
- [36] S. Sahoo and S. Saha Ray, Solitary wave solutions for time fractional third order modified KdV equation using two reliable techniques (G /G)-expansion method and improved (G /G)-expansion method, Physica A, 448(15) (2016), 265–282.
- [37] A. Samil and A. Tugba, Comparison between the (G /G)-expansion method and the modified extended tanh method, Open Phys., 14(1) (2016), 88–94.
- [38] A. R. Seadawy, D. Yaro, and D. Lu, Propagation of nonlinear waves with a weak dispersion via coupled (2+1)dimensional Konopelchenko–Dubrovsky dynamical equation, Pramana – J. Phys., 94 (2020), 17.
- [39] M. Wang, X. Li, and J. Zhang, The -expansion method and travelling wave solutions of nonlinear evolution equations in mathematical physics, Phys. Lett. A, 372 (2008), 417–423.
- [40] A. M. Wazwaz, Soliton solutions for seventh-order Kawahara equation with time-dependent coefficients, Mod. Phys. Lett. B, 25 (2011), 643–648.
- [41] A. M. Wazwaz, The simplified Hirota’s method for studying three extended higher-order KdV-type equations, J. Ocean Eng. Sci., 1 (2016), 181–185.
- [42] L. Wu , X. Zhang, and J. Manafian, On the exact solitary wave solutions to the new (2 + 1) and (3 + 1)dimensional extensions of the Benjamin-Ono equations, Adv. Math. Phys., 2021 (2021), ID 6672819.
- [43] A. Yokus, K. K. Ali, R. Yilmazer, and H. Bulut, On exact solutions of the generalized Pochhammer-Chree equation, Comput. Methods Differ. Equ., 10(3) (2022), 746–754.
- [44] E. M. E. Zayed and K. A. Gepreel, The modified -expansion method and its applications to construct exact solutions for nonlinear PDEs, WSEAS Trans. Math., 8(10) (2011), 270–278.
- [45] M. Zhao and C. Li, The exp(−ϕ(ξ))-expansion method applied to nonlinear evolution equations, (2008), http://www.paper.edu.cn.
- [46] Q. Zhou, Analytical study of solitons in magneto-electro-elastic circular rod, Nonlinear Dyn., 83 (2016), 1403–1408.
|