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Abstract

In this paper, we acquire novel traveling wave solutions of the generalized seventh-order Korteweg–de Vries

equation and the seventh-order Kawahara equation as a special case with physical interest. Primarily, we use
the advanced exp(−ϕ(ξ))-expansion method to find new exact solutions of the first equation, by considering two

auxiliary equations. Then, we attain some exact solutions of the seventh-order Kawahara equation by using this

method with another auxiliary equation, and also using the modified (G
′
/G)-expansion method, where G satisfies

a second-order linear ordinary differential equation. Additionally, utilizing the recent scientific instruments, the

2D, 3D, and contour plots are displayed. The solutions obtained in this paper include bright solitons, dark solitary
wave solutions, and multiple dark solitary wave solutions. It is shown that these two methods provide an effective

mathematical tool for solving nonlinear evolution equations arising in mathematical physics and engineering.
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1. Introduction

Nonlinear evolution equations (NLEEs) are useful for describing a wide range of phenomena in many fields, including
fluid dynamics, fiber optics, plasma waves, mathematical biology, etc. Finding the exact traveling wave solutions to
these equations are crucial for the study of many nonlinear scientific fields. These solutions aid physicists and engineers
in better comprehending the mechanisms at work and addressing physical issues. Analytical solutions of nonlinear
partial differential equations (PDEs) enable the deciphering of underlying mechanisms behind many nonlinear complex
phenomena. They provide insights into various aspects such as the absence or abundance of steady states under
different necessary conditions, the existence of peak regimes, and the spatial localization of transfer processes.

Over the past ten years, numerous effective techniques have been developed and extended for finding traveling wave
solutions to NLEEs. Some of these techniques include the modified simple equation method, the simplified Hirota’s
method, the modified (G

′
/G)-expansion method, the (1/G

′
)-expansion method, the generalized (G

′
/G)-expansion

method, the Jacobi elliptic function expansion method, the modified exponential function method, the improved

tan(ϕ(ξ)2 )-expansion method, Painlevé transformation, Kudryashov method, the extended trial equation method, the
modified extended direct algebraic method, and others (see [1, 18, 19, 21–23, 29, 38, 41–44]). Furthermore, significant
advancements have been made in the search for analytical solitary wave solutions for PDEs. Some notable references
in this area are [4, 6, 8, 13, 14, 24, 25, 33].

Among the most efficient and reliable techniques are the exp(−ϕ(ξ))-expansion method and the (G
′
/G)-expansion

method. The former was first introduced by Zhao and Li [45] and has since been extensively used and expanded upon
in various studies [2, 7, 11, 12, 15–17, 26, 27] to derive different variations. The latter was initially introduced by
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Wang et al. [39] and has been utilized and extended in several works [3, 20, 31, 36, 37, 44, 46]. It has been shown
that these methods provide many explicit solutions to the NLEEs.

In this study, we use two integration schemes known as the advanced exp(−ϕ(ξ))-expansion method and the modified

(G
′
/G)-expansion method to attempt to find new exact solutions of the generalized seventh-order Korteweg–de Vries

equation.
The advanced exp(−ϕ(ξ))-expansion method is based on the assumption that the traveling wave solutions can

be described by a polynomial in exp(−ϕ(ξ)). This method takes into account three ordinary differential equations
(ODEs) as auxiliary equations:

ϕ′(ξ) = exp(−ϕ(ξ)) + µ exp(ϕ(ξ)) + λ,

ϕ′(ξ) = −λ exp(ϕ(ξ))− µ exp(−ϕ(ξ)),

and ϕ′(ξ) = −
√
λ+ µ (exp(−ϕ(ξ)))

2
.

While the modified (G
′
/G)-expansion method is predicated on the idea that the traveling wave solutions can be

expressed by a polynomial in (G
′
/G), where G(ξ) fulfills the second-order linear ODE:

G′′(ξ) + λG′(ξ) + µG(ξ) = 0.

The generalized seventh-order Korteweg–de Vries (gsKdV) equation can be expressed as:

ut + auux + bu3x + cu5x + du7x = 0, (1.1)

where a, b, c, d are real constants, d 6= 0, and unx = ∂nu
∂xn .

This equation plays an important role in mathematical physics, engineering, and applied sciences. The case a =
6, b = 1, c = −1, and d = α corresponds to the seventh-order Kawahara (sKawahara) equation. It describes various
phenomena, such as the dynamics of long waves in a viscous fluid, shallow water waves with surface tension, and
magneto-acoustic waves in plasmas.

Model equation (1.1) was initially introduced by Pomeau et al. [35] to study the stability of a solution to the KdV
equation when higher-order spatial derivative terms are added. Ma [28] was the first to find an explicit solution to (1.1)
with a sech6-term, which, unfortunately, does not satisfy this equation as pointed out by Duffy and Parkes [10]. They
corrected Ma’s solution and found another solution, Parkes et al. [34] surveyed the generalized (2m + 1)-order KdV
equation, but the solutions were not written explicitly. Mohyud-Din et al. [32] studied the solitary wave solutions of
(1.1) using He’s polynomials. Their suggested iterative scheme leads to the desired solution. Mancas and Hereman [30]
investigated the applications of (1.1) using an elliptic function method, which calculated hump-type solitary waves and
cnoidal wave solutions. Several researchers have studied a special case of this equation using analytical and numerical
methods [5, 9, 40].

The rest of this paper is arranged as follows: In Section 2, we present the exp(−ϕ(ξ))-expansion method combined

with three auxiliary equations and the modified (G
′
/G)-expansion method. In Section 3, these methods are imple-

mented to the gsKdV equation and related equation. Results and discussion are given in Section 4. Finally, a brief
conclusion is given in Section 5.

2. Description of the methods

Let us consider the NLEE as follows:

P (u, ut, ux, utt, uxx, uxt, ...) = 0, (2.1)

where P is a polynomial and u(x, t) is an unknown function.
Firstly, suppose u(x, t) = u(ξ), where ξ = x± ωt. Then, Eq. (2.1) reduces to a nonlinear ODE for u = u(ξ):

Q (u, u′, u′′, u′′′, .......) = 0, (2.2)

where Q is a function of u and its derivatives.
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2.1. Description of the advanced exp(−ϕ(ξ))-expansion method. This method is performed by the following
steps:

Step 1 . Let us consider the solution of Eq. (2.2) to be of the form:

u(ξ) =

m∑
i=0

αi (exp(−ϕ(ξ)))
i
, αm 6= 0, (2.3)

where m is a positive integer, αi (0 ≤ i ≤ m) are constants to be evaluated and ϕ = ϕ(ξ) satisfies one of the
following three ODEs:

ϕ′(ξ) = exp(−ϕ(ξ)) + µ exp(ϕ(ξ)) + λ, (2.4)

ϕ′(ξ) = −λ exp(ϕ(ξ))− µ exp(−ϕ(ξ)), (2.5)

ϕ′(ξ) = −
√
λ+ µ (exp(−ϕ(ξ)))

2
. (2.6)

Here, λ and µ are arbitrary constants. It is important to note that the solutions of Eqs. (2.4), (2.5), and
(2.6) can be found in [15].

Step 2 . Calculate m by using the homogeneous balance principle in Eq. (2.2).
Step 3 . By substituting Eq. (2.3) into Eq. (2.2) and using Eq. (2.4) or (2.5) or (2.6) recursively, we obtain a system

of algebraic equations for αi, λ, µ, and ω. In this way, the exact solutions of Eq. (2.1) can be found.

2.2. Description of the modified (G
′
/G)-expansion method. The following steps are used to carry out this

method:

Step 1 . Let’s say the solution to Eq. (2.2) can be stated as follows:

u(ξ) =

m∑
i=−m

αi

(
G

′

G

)i
, α−m 6= 0, αm 6= 0, (2.7)

where m is a positive integer, αi (−m ≤ i ≤ m) are constants to be evaluated, and G = G(ξ) satisfies the
following second-order linear ODE:

G′′(ξ) + λG′(ξ) + µG(ξ) = 0, (2.8)

where λ and µ are arbitrary constants.
Step 2 . Apply the homogeneous balancing principle to Eq. (2.2) to obtain m.
Step 3 . By substituting Eq. (2.7) into Eq. (2.2) and using Eq. (2.8), we obtain a system of algebraic equations for

αi, λ, µ, and ω. Since we are aware of the general solutions to Eq. (2.8) depending on the sign of λ2 − 4µ, we
can find the exact solutions of Eq. (2.1).

3. Applications of the proposed methods

3.1. Application of the advanced exp(−ϕ(ξ))-expansion method to the gsKdV equation. The general form
of the gsKdV equation is

ut + auux + bu3x + cu5x + du7x = 0. (3.1)

By using the change of variables u(x, t) = u(ξ) and ξ = x− ωt, this equation reduces to a nonlinear ODE:

−ωu′ + auu′ + bu′′′ + cu′′′′′ + du′′′′′′′ = 0. (3.2)

Integrating Eq. (3.2) with respect to ξ, and taking the integration constants as zero, we obtain:

−ωu+
a

2
u2 + bu′′ + cu′′′′ + du′′′′′′ = 0. (3.3)
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By applying homogeneous balance, we obtain m = 6. Therefore, the solution to Eq. (3.3) can be expressed as follows:

u(ξ) =

6∑
i=0

αi(exp(−ϕ(ξ)))i, α6 6= 0. (3.4)

where ϕ(ξ) satisfies one of the ODEs (2.5), ( 2.6), and (2.4). The constants αi are unknown constants that need to
be determined.

Substituting Eq. (3.4) into Eq. (3.3) and using the auxiliary equation (2.5), we can equate the coefficients of

(exp(−ϕ(ξ))
i

to zero. This leads to a system of algebraic equations. For the sake of convenience, this system has been
overlooked. By solving the resulting system, we obtain the following sets of solutions:

Set 1

b =
769

4· 54
c2

d
, λ =

1

200

c

dµ
, ω = ±18

54
c3

d2
,

α0 =− 639

8· 55
c3

ad2
or α0 = −2079

8· 55
c3

ad2
, α1 = 0, α2 = −6237

53
c2µ2

ad
,

α3 =0, α4 = −49896

5

cµ4

a
, α5 = 0, α6 = −665280

dµ6

a
.

Set 2

b =
2159

104
c2

d
, λ =

1

400

c

dµ
, ω = ± 71

104
c3

d2
,

α0 =− 659

105
c3

ad2
or α0 = −2079

105
c3

ad2
, α1 = 0, α2 = −2079

102
c2µ2

ad
,

α3 =0, α4 = −33264

5

cµ4

a
, α5 = 0, α6 = −665280

dµ6

a
.

In accordance with Set 1 and Set 2, the solutions of the gsKdV equation are obtained in the following form:

• For Set 1, we have b =
769

4· 54
c2

d
.

Case 1.1 When λµ > 0,

u1(ζ) = − ρc
3

ad2
(
%+ 3 tan2 (ζ) + 3 tan4 (ζ) + tan6 (ζ)

)
,

u2(ζ) = − ρc
3

ad2
(
%+ 3 cot2 (ζ) + 3 cot4 (ζ) + cot6 (ζ)

)
,

(3.5)

where ρ =
2079

8· 55
, % =

71

231
, ζ =

1

10

√
c

2d
(ξ + k), ξ = x− 18

625

c3

d2
t , and k is a constant of integration.

Or

u3(ζ) = − ρc
3

ad2
(
1 + 3 tan2 (ζ) + 3 tan4 (ζ) + tan6 (ζ)

)
,

u4(ζ) = − ρc
3

ad2
(
1 + 3 cot2 (ζ) + 3 cot4 (ζ) + cot6 (ζ)

)
,

(3.6)

where ξ = x+
18

625

c3

d2
t.
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(a) u3 in 3D with −100 ≤ x ≤ 8,
− 0.01 ≤ t ≤ 0.01

(b) u3 in 2D with −110 ≤ x ≤ 90,
t = 1, t = 20, t = 40

(c) u3 in contourplot:
−100 ≤ x ≤ 10, −0.01 ≤ t ≤ 0.01

Figure 1: Multiple dark solitary wave solution of u3 for a = 6, b = 1, c = 1, d = 769
4·54 , λµ = 25

1538 , and k = 1.

Case 1.2 When λµ < 0,

u5(ζ) = − ρc
3

ad2
(
%− 3 tanh2 (ζ) + 3 tanh4 (ζ)− tanh6 (ζ)

)
,

u6(ζ) = − ρc
3

ad2
(
%− 3 coth2 (ζ) + 3 coth4 (ζ)− coth6 (ζ)

)
,

(3.7)

where ρ =
2079

8· 55
, % =

71

231
, ζ =

1

10

√
−c
2d

(ξ + k), and ξ = x− 18

625

c3

d2
t.

Or

u7(ζ) = − ρc
3

ad2
(
1− 3 tanh2 (ζ) + 3 tanh4 (ζ)− tanh6 (ζ)

)
,

u8(ζ) = − ρc
3

ad2
(
1− 3 coth2 (ζ) + 3 coth4 (ζ)− coth6 (ζ)

)
,

(3.8)

where ξ = x+
18

625

c3

d2
t.
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(a) u7 in 3D with −50 ≤ x, t ≤ 50 (b) u7 in 2D with −50 ≤ x ≤ 50,

t = 1, t = 10, t = 20

(c) u7 in contourplot: −50 ≤ x, t ≤
50

Figure 2: Bright soliton solution of u7 for a = 6, b = 1, c = −1, d = 769
4·54 , λµ = −25

1538 , and k = 1.

• For Set 2, we have b =
2159

104
c2

d
.

Case 2.1 When λµ > 0,

u9(ζ) = − ρc
3

ad2
(
%+ 5 tan2 (ζ) + 4 tan4 (ζ) + tan6 (ζ)

)
,

u10(ζ) = − ρc
3

ad2
(
%+ 5 cot2 (ζ) + 4 cot4 (ζ) + cot6 (ζ)

)
,

(3.9)

where ρ =
2079

2 · 105
, % =

1318

2079
, ζ =

1

20

√
c

d
(ξ + k), and ξ = x− 71

104
c3

d2
t.

Or

u11(ζ) = − ρc
3

ad2
(
2 + 5 tan2 (ζ) + 4 tan4 (ζ) + tan6 (ζ)

)
,

u12(ζ) = − ρc
3

ad2
(
2 + 5 cot2 (ζ) + 4 cot4 (ζ) + cot6 (ζ)

)
,

(3.10)

where ξ = x+
71

104
c3

d2
t.
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(a) u12 in 3D with −70 ≤ x ≤ 70,

− 0.1 ≤ t ≤ 0.1

(b) u12 in 2D with −20 ≤ x ≤ 60,

t = 1, t = 20, t = 40

(c) u12 in contourplot: −60 ≤ x ≤
70,

− 0.1 ≤ t ≤ 0.1

Figure 3: Multiple dark solitary wave solution of u12 for a = 6, b = 1, c = 1, d = 2159
104 , λµ = 25

2159 , and k = 1.

Case 2.2 When λµ < 0,

u13(ζ) = − ρc
3

ad2
(
%− 5 tanh2 (ζ) + 4 tanh4 (ζ)− tanh6 (ζ)

)
,

u14(ζ) = − ρc
3

ad2
(
%− 5 coth2 (ζ) + 4 coth4 (ζ)− coth6 (ζ)

)
,

(3.11)

where ρ =
2079

2 · 105
, % =

1318

2079
, ζ =

1

20

√
−c
d

(ξ + k), and ξ = x− 71

104
c3

d2
t.

Or

u15(ζ) = − ρc
3

ad2
(
2− 5 tanh2 (ζ) + 4 tanh4 (ζ)− tanh6 (ζ)

)
,

u16(ζ) = − ρc
3

ad2
(
2− 5 coth2 (ζ) + 4 coth4 (ζ)− coth6 (ζ)

)
,

(3.12)

where ξ = x+
71

104
c3

d2
t.

Again, by substituting Eq. (3.4) into Eq. (3.3) and using the auxiliary equation (2.6), and by equating the

coefficients of (exp(−ϕ(ξ))
i

to zero, we obtain a system of algebraic equations that is overlooked for convenience.
Solving the obtaining system, we obtain the following sets of solutions:

Set 3

b =
769

4· 54
c2

d
, λ = − 1

200

c

d
, ω = ±18

54
c3

d2
,

α0 =
36

54
c3

ad2
or α0 = 0, α1 = 0, α2 = 0, α3 = 0,

α4 =0, α5 = 0, α6 = −665280 dµ3

a
.



CMDE Vol. 12, No. 2, 2024, pp. 392-412 399

Set 4

b =
2159

104
c2

d
, λ = − 1

400

c

d
, ω = ± 71

104
c3

d2
,

α0 =
71

8· 54
c3

ad2
or α0 = 0, α1 = 0, α2 = 0, α3 = 0,

α4 =− 8316

5

cµ2

a
, α5 = 0, α6 = −665280 dµ3

a
.

According to Set 3 and Set 4, the solutions of the gsKdV equation are derived in the following form:

• For Set 3, we have b =
769

4· 54
c2

d
.

Case 3.1 When λ > 0, µ > 0,

u17(ζ) =
ρc3

ad2
(
%+ csch6 (ζ)

)
, (3.13)

where ρ =
2079

8· 55
, % =

160

231
, ζ =

1

10

√
−c
2d

(ξ + k), and ξ = x− 18

625

c3

d2
t.

Or

u18(ζ) =
ρc3

ad2
csch6 (ζ) , (3.14)

where ξ = x+
18

625

c3

d2
t.

(a) u18 in 3D with −15 ≤ x ≤ 15,
− 0.01 ≤ t ≤ 0.01

(b) u18 in 2D with −10 ≤ x ≤ 10,
t = 1, t = 5, t = 10

(c) u18 in contourplot: −15 ≤ x ≤ 15,
− 0.01 ≤ t ≤ 0.01

Figure 4: Dark solitary wave solution of u18 for a = 6, b = 1, c = −1, d = 769
4·54 , λ = 25

1538 , and k = 1.

Case 3.2 When λ < 0, µ > 0,

u19(ζ) =
ρc3

ad2
(
%− sec6 (ζ)

)
, (3.15)

where ρ =
2079

8· 55
, % =

160

231
, ζ =

1

10

√
c

2d
(ξ + k), and ξ = x− 18

625

c3

d2
t.
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Or

u20(ζ) = − ρc
3

ad2
sec6 (ζ) , (3.16)

where ξ = x+
18

625

c3

d2
t.

Case 3.3 When λ > 0, µ < 0,

u21(ζ) =
ρc3

ad2
(
%− sech6 (ζ)

)
, (3.17)

where ρ =
2079

8· 55
, % =

160

231
, ζ =

1

10

√
−c
2d

(ξ + k), and ξ = x− 18

625

c3

d2
t.

Or

u22(ζ) = − ρc
3

ad2
sech6 (ζ) , (3.18)

where ξ = x+
18

625

c3

d2
t.

(a) u21 in 3D with −20 ≤ x, t ≤ 20 (b) u21 in 2D with −40 ≤ x ≤ 40,
t = 1, t = 10, t = 20

(c) u21 in contourplot:−20 ≤ x, t ≤
20

Figure 5: Bright soliton solution of u21 for a = 6, b = 1, c = −1, d = 769
4·54 , λ = 25

1538 , and k = 1.

Case 3.4 When λ < 0, µ < 0,

u23(ζ) =
ρc3

ad2
(
%− csc6 (ζ)

)
, (3.19)

where ρ =
2079

8· 55
, % =

160

231
, ζ =

1

10

√
c

2d
(ξ + k), and ξ = x− 18

625

c3

d2
t.

Or

u24(ζ) = − ρc
3

ad2
csc6 (ζ) , (3.20)

where ξ = x+
18

625

c3

d2
t.



CMDE Vol. 12, No. 2, 2024, pp. 392-412 401

• For Set 4, we have b =
2159

104
c2

d
.

Case 4.1 When λ > 0, µ > 0,

u25(ζ) =
ρc3

ad2
(
%− csch4 (ζ) + csch6 (ζ)

)
, (3.21)

where ρ =
2079

2· 105
, % =

2840

2079
, ζ =

1

20

√
−c
d

(ξ + k), and ξ = x− 71

104
c3

d2
t.

Or

u26(ζ) = − ρc
3

ad2
(
csch4 (ζ)− csch6 (ζ)

)
, (3.22)

where ξ = x+
71

104
c3

d2
t.

Case 4.2 When λ < 0, µ > 0,

u27(ζ) =
ρc3

ad2
(
%− sec4 (ζ)− sec6 (ζ)

)
, (3.23)

where ρ =
2079

2· 105
, % =

2840

2079
, ζ =

1

20

√
c

d
(ξ + k), and ξ = x− 71

104
c3

d2
t.

Or

u28(ζ) = − ρc
3

ad2
(
sec4 (ζ) + sec6 (ζ)

)
, (3.24)

where ξ = x+
71

104
c3

d2
t.

(a) u28 in 3D with −70 ≤ x ≤ 70,

− 0.1 ≤ t ≤ 0.1

(b) u28 in 2D with −60 ≤ x ≤ 50,

t = 1, t = 20, t = 40

(c) u28 in contourplot: −60 ≤ x ≤ 50,

−0.1 ≤ t ≤ 0.1

Figure 6: Multiple dark solitary wave solution of u28 for a = 6, b = 1, c = 1, d = 2159
104 , λ = −25

2159 , and k = 1.

Case 4.3 When λ > 0, µ < 0,

u29(ζ) =
ρc3

ad2
(
%− sech4 (ζ)− sech6 (ζ)

)
, (3.25)
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where ρ =
2079

2· 105
, % =

2840

2079
, ζ =

1

20

√
−c
d

(ξ + k), and ξ = x− 71

104
c3

d2
t.

Or

u30(ζ) = − ρc
3

ad2
(
sech4 (ζ) + sech6 (ζ)

)
, (3.26)

where ξ = x+
71

104
c3

d2
t.

Case 4.4 When λ < 0, µ < 0,

u31(ζ) =
ρc3

ad2
(
%− csc4 (ζ)− csc6 (ζ)

)
, (3.27)

where ρ =
2079

2· 105
, % =

2840

2079
, ζ =

1

20

√
c

d
(ξ + k), and ξ = x− 71

104
c3

d2
t.

Or

u32(ζ) = − ρc
3

ad2
(
csc4 (ζ) + csc6 (ζ)

)
, (3.28)

where ξ = x+
71

104
c3

d2
t.

Again, by substituting Eq. (3.4) into Eq. (3.3) and using the auxiliary equation (2.4), we obtain a system of
algebraic equations that is very difficult to solve using symbolic computation. Consequently, we restricted our study
to the special case of the gsKdV equation, specifically the Kawahara equation.

3.2. Application of the advanced exp(−ϕ(ξ))-expansion method to the sKawahara equation. In Eq. (3.1),
when we have a = 6, b = 1, c = −1, and d = α, it corresponds to the standard form of the seventh-order Kawahara
equation [40]:

ut + 6uux + u3x − u5x + αu7x = 0. (3.29)

This equation can be reduced to a nonlinear ODE:

−ωu+ 3u2 + u′′ − u′′′′ + αu′′′′′′ = 0. (3.30)

By substituting Eq. (3.4) into Eq. (3.30) and using the auxiliary equation (2.4), we can equate the coefficients of

(exp(−ϕ(ξ))
i

to zero, which leads to a system of algebraic equations. However, for convenience, we neglect this system
and proceed to solve the obtained system, obtaining the following sets of solutions:

Set 5

α =
769

4· 54
, λ = ±

√
4µ+

50

769
, ω = ±18· 104

7692
,

α0 =− 4263336

125
µ3 or α0 = −4263336

125
µ3 − 6· 104

591361
, α1 = −12790008

125
λµ2,

α2 =− 12790008

25
µ2 − 33264

5
µ, α3 = −11088

25
λ(769µ+ 5),

α4 =− 12790008

25
µ− 33264

5
, α5 = −12790008

125
λ, α6 = −4263336

125
.
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Set 6

α =
2159

104
, λ = ±

√
4µ+

100

2159
, ω = ±71· 104

21592
,

α0 =− 1386

5
µ2(

2159

25
µ− 1) or α0 = −2992374

125
µ3 +

1386

5
µ2 − 71· 104

13983843
,

α1 =− 1386

125
λµ(6477µ− 50), α2 = −8977122

25
µ2 − 8316

5
µ+

27720

2159
,

α3 =− 2772

25
λ(2159µ+ 5), α4 = −8977122

25
µ− 15246

5
,

α5 =− 8977122

125
λ, α6 = −2992374

125
.

Depending on Set 5 and Set 6, and given that λ2 − 4µ > 0, the solutions of the Kawahara equation are obtained in
the following form:

• For Set 5, we have α =
769

4· 54
.

Case 5.1 When µ 6= 0,

u33(ζ) =− ρµ3 +
6ρλµ3

ψ1(ζ)
− 60 (ρµ+ σ)µ3

ψ2
1(ζ)

+
8σ(769µ+ 5)λµ3

ψ3
1(ζ)

− 240 (ρµ+ σ)µ4

ψ4
1(ζ)

+
96ρλµ5

ψ5
1(ζ)

− 64ρµ6

ψ6
1(ζ)

,

u34(ζ) =− ρµ3 +
6ρλµ3

ψ2(ζ)
− 60 (ρµ+ σ)µ3

ψ2
2(ζ)

+
8σ(769µ+ 5)λµ3

ψ3
2(ζ)

− 240 (ρµ+ σ)µ4

ψ4
2(ζ)

+
96ρλµ5

ψ5
2(ζ)

− 64ρµ6

ψ6
2(ζ)

,

(3.31)

where ρ =
4263336

125
, σ =

11088

25
, ψ1(ζ) =

10√
1538

tanh (ζ) + λ, ψ2(ζ) =
10√
1538

coth (ζ) + λ,

ζ =
5√

1538
(ξ + k), and ξ = x− 18· 104

7692
t.
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(a) u34 in 3D with −10 ≤ x ≤ 5,

− 0.01 ≤ t ≤ 0.01

(b) u34 in 2D with −4 ≤ x ≤ 1,

t = 1, t = 2, t = 3

(c) u34 in contourplot: −10 ≤ x ≤
5, −0.01 ≤ t ≤ 0.01

Figure 7: Dark solitary wave solution of u34 for α = 769
4·54 , µ = 1, and k = 1.

Or

u35(ζ) =− ρµ3 − 6· 104

(769)
2 +

6ρλµ3

ψ1(ζ)
− 60 (ρµ+ σ)µ3

ψ2
1(ζ)

+
8σ(769µ+ 5)λµ3

ψ3
1(ζ)

− 240 (ρµ+ σ)µ4

ψ4
1(ζ)

+
96ρλµ5

ψ5
1(ζ)

− 64ρµ6

ψ6
1(ζ)

,

u36(ζ) =− ρµ3 − 6· 104

(769)
2 +

6ρλµ3

ψ2(ζ)
− 60 (ρµ+ σ)µ3

ψ2
2(ζ)

+
8σ(769µ+ 5)λµ3

ψ3
2(ζ)

− 240 (ρµ+ σ)µ4

ψ4
2(ζ)

+
96ρλµ5

ψ5
2(ζ)

− 64ρµ6

ψ6
2(ζ)

,

(3.32)

where ξ = x+
18· 104

7692
t.

Case 5.2 When µ = 0,

u37(ζ) = − 5σλ4 exp(3ζ)

(exp(ζ)− 1)
6 , (3.33)

where λ2 =
50

769
, σ =

11088

25
, ζ = λ(ξ + k), and ξ = x− 72λ4t.

Or

u38(ζ) = −24λ4 − 5σλ4 exp(3ζ)

(exp(ζ)− 1)
6 , (3.34)

where ξ = x+ 72λ4t.

• For Set 6, we have α =
2159

104
.
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Case 6.1 When µ 6= 0,

u39(ζ) =− ρµ3 +
5

2
σµ2 +

σ(6477µ− 50)λµ2

5ψ3(ζ)
−

60
(
ρµ2 + σµ− γ1

)
µ2

ψ2
3(ζ)

+
8σ(2159µ+ 5)λµ3

ψ3
3(ζ)

− 240 (ρµ+ γ2)µ4

ψ4
3(ζ)

+
96ρλµ5

ψ5
3(ζ)

− 64ρµ6

ψ6
3(ζ)

,

u40(ζ) =− ρµ3 +
5

2
σµ2 +

σ(6477µ− 50)λµ2

5ψ4(ζ)
−

60
(
ρµ2 + σµ− γ1

)
µ2

ψ2
4(ζ)

+
8σ(2159µ+ 5)λµ3

ψ3
4(ζ)

− 240 (ρµ+ γ2)µ4

ψ4
4(ζ)

+
96ρλµ5

ψ5
4(ζ)

− 64ρµ6

ψ6
4(ζ)

,

(3.35)

where ρ =
2992374

125
, σ =

2772

25
, γ1 =

1848

2159
, γ2 =

5082

25
, ψ3(ζ) =

10√
2159

tanh (ζ) + λ,

ψ4(ζ) =
10√
2159

coth (ζ) + λ, ζ =
5√

2159
(ξ + k), and ξ = x− 71· 104

21592
t.

(a) u41 in 3D with −50 ≤ x, t ≤ 50 (b) u41 in 2D with −30 ≤ x ≤ 30,
t = 1, t = 10, t = 20

(c) u41 in contourplot:−50 ≤ x, t ≤
50

Figure 8: Bright soliton solution of u41 for α = 2159
104 , µ = 1, and k = 1.

Or

u41(ζ) =− ρµ3 +
5

2
σµ2 − 71· 104

3· 21592
+
σ(6477µ− 50)λµ2

5ψ3(ζ)
−

60
(
ρµ2 + σµ− γ1

)
µ2

ψ2
3(ζ)

+
8σ(2159µ+ 5)λµ3

ψ3
3(ζ)

− 240 (ρµ+ γ2)µ4

ψ4
3(ζ)

+
96ρλµ5

ψ5
3(ζ)

− 64ρµ6

ψ6
3(ζ)

,

u42(ζ) =− ρµ3 +
5

2
σµ2 − 71· 104

3· 21592
+
σ(6477µ− 50)λµ2

5ψ4(ζ)
−

60
(
ρµ2 + σµ− γ1

)
µ2

ψ2
4(ζ)

+
8σ(2159µ+ 5)λµ3

ψ3
4(ζ)

− 240 (ρµ+ γ2)µ4

ψ4
4(ζ)

+
96ρλµ5

ψ5
4(ζ)

− 64ρµ6

ψ6
4(ζ)

,

(3.36)

where ξ = x+
71· 104

21592
t.



406 R. HEDLI AND F. BERRIMI

Case 6.2 When µ = 0,

u43(ζ) =
5σλ4

2

(
exp(4ζ)− 6 exp(3ζ) + exp(2ζ)

(exp(ζ)− 1)
6

)
, (3.37)

where λ2 =
100

2159
, σ =

2772

25
, ζ = λ(ξ + k), and ξ = x− 71λ4t.

Or

u44(ζ) = −71λ4

3
+

5σλ4

2

(
exp(4ζ)− 6 exp(3ζ) + exp(2ζ)

(exp(ζ)− 1)
6

)
, (3.38)

where ξ = x+ 71λ4t.

3.3. Application of the modified (G
′
/G)-expansion method to the gsKdV equation. As the second method,

we use the modified (G
′
/G)-expansion method for Eq. (3.3), which is given as:

−ωu+
a

2
u2 + bu′′ + cu′′′′ + du′′′′′′ = 0. (3.39)

Considering the homogenous balance, we obtain m = 6. So the solution of (3.39) can be described as:

u(ξ) =

6∑
i=−6

αi

(
G

′

G

)i
, α−6 6= 0, α6 6= 0. (3.40)

where G(ξ) satisfies the second-order linear differential equation (2.8), and αi are unknown constants to be identified.
Substituting Eq. (3.40) into Eq. (3.39) and using the auxiliary equation (2.8), we can equate the coefficients

of
(
G

′

G

)i
to zero. However, this leads to an algebraic system that proves to be difficult to solve using symbolic

arithmetic. Similarly to the previous method utilizing the auxiliary equation (2.4), the study of the sKawahara
equation was consequently limited.

3.4. Application of the modified (G
′
/G)-expansion method to the sKawahara equation. We use the mod-

ified (G
′
/G)-expansion method for Eq. (3.30) which is given as:

−ωu+ 3u2 + u′′ − u′′′′ + αu′′′′′′ = 0. (3.41)

By substituting Eq. (3.40) into Eq. (3.41) and using the auxiliary equation (2.8), and by equating the coefficients

of
(
G

′

G

)i
to zero, we obtain a system of algebraic equations. For the sake of convenience, this system is disregarded.

Solving the obtained system, we obtain the following sets of solutions:

Set 7

α =
769

4· 54
, λ = 0, µ = − 25

769· 23
, ω = ∓18· 104

7692
,

α−6 =− 693· 59

7695· 215
, α−5 = 0, α−4 =

2079· 57

7694· 211
, α−3 = 0, α−2 = −2079· 56

7693· 29
,

α−1 =0, α0 = − 843· 54

7692· 24
or α0 =

693· 54

7692· 24
, α1 = 0, α2 = − 51975

769· 23
,

α3 =0, α4 =
4158

5
, α5 = 0, α6 = −4263336

125
.
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Set 8

α =
2159

104
, λ = 0, µ = − 25

2159· 22
, ω = ∓71· 104

21592
,

α−6 =− 693· 59

21595· 211
, α−5 = 0, α−4 =

693· 58

21594· 28
, α−3 = 0, α−2 = −21483· 55

21593· 27
,

α−1 =0, α0 = −22571· 53

24· 21592
or α0 =

7623· 53

21592· 23
, α1 = 0, α2 = − 107415

2159· 23
,

α3 =0, α4 = 693, α5 = 0, α6 = −2992374

125
.

Given that λ = 0 and µ < 0, we can infer for λ2 − 4µ > 0 that

G
′

G
=
√
−µ
(
C1 sinh (

√
−µ ξ) + C2 cosh (

√
−µ ξ)

C1 cosh (
√
−µ ξ) + C2 sinh (

√
−µ ξ)

)
=
√
−µ tanh

(√
−µ (ξ + ξ0)

)
,

(3.42)

where tanh (
√
−µ ξ0) =

C2

C1
.

Depending on Set 7 and Set 8, the solutions of the sKawahara equation are obtained in the following form:

• For Set 7, we have α =
769

4· 54
.

u45(ζ) =− 5620

231
β − 15β tanh2 (ζ) + 6β tanh4 (ζ)− β tanh6 (ζ)

− 15β coth2 (ζ) + 6β coth4 (ζ)− β coth6 (ζ) ,
(3.43)

where β =
693· 53

26· 7692
, ζ =

5

2
√

1538
(ξ + ξ0), and ξ = x+

18· 104

7692
t.

Or

u46(ζ) =20β − 15β tanh2 (ζ) + 6β tanh4 (ζ)− β tanh6 (ζ)

− 15β coth2 (ζ) + 6β coth4 (ζ)− β coth6 (ζ) ,
(3.44)

where ξ = x− 18· 104

7692
t.
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(a) u45 in 3D with −10 ≤ x ≤ 10,

− 0.0001 ≤ t ≤ 0.0001

(b) u45 in 2D with −10 ≤ x ≤ 10,

t = 1, t = 5, t = 10

(c) u45 in contourplot: −10 ≤ x ≤
10,
− 0.0001 ≤ t ≤ 0.0001

Figure 9: Dark solitary wave solution of u45 for α = 769
4·54 , and ξ0 = 1.

• For Set 8, we have α =
2159

104
.

u47(ξ) =− 90284

2079
β − 31β tanh2 (ζ) + 10β tanh4 (ζ)− β tanh6 (ζ)

− 31β coth2 (ζ) + 10β coth4 (ζ)− β coth6 (ζ) ,
(3.45)

where β =
693· 53

25· 21592
, ζ =

5

2
√

2159
(ξ + ξ0), and ξ = x+

71· 104

21592
t.

Or

u48(ξ) =44β − 31β tanh2 (ζ) + 10β tanh4 (ζ)− β tanh6 (ζ)

− 31β coth2 (ζ) + 10β coth4 (ζ)− β coth6 (ζ) ,
(3.46)

where ξ = x− 71· 104

21592
t.

Remark 3.1. All of the solutions found in this study were checked with Maple by reinserting them into the original
equations, and they were found to be correct.

4. Results and discussion

In this paper, two analytical techniques are employed to investigate the generalized seventh-order KdV equation
with constant coefficients (1.1). The specific components of this parametric equation describe various phenomena,
including magneto-acoustic, hydrodynamic, and electrical impulses in plasmas. This study enabled the calculation of
bright solitons, dark solitary wave solutions, and multiple dark solitary wave solutions. These findings are crucial for
understanding practical physical problems and can serve as references for numerical solvers and perturbation methods.
It was observed that the coefficients cannot be chosen arbitrarily; instead, they satisfy specific algebraic relations. The
results of these analyses are highly intriguing and offer appealing insights. Furthermore, a broader and significant
number of exact traveling wave solutions were obtained.

While many of the solutions in this study are brand new, several of them show results that have already been
documented in the literature. To the best of our knowledge, every solution that came from Sets 1 and 2 derived from
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the solutions of Eq. (2.5), and a large number of solutions that came from Sets 3 and 4 derived from the solutions
of Eq. (2.6) are all novel solutions. Solution (3.18) is equivalent to a solution reported by Ma [28], Duffy and Parkes
[10], and by Mancas and Hereman [30]. Actually, the solution (25) on page 114002-4 in [30] that reads as follows:

u(x, t) = −154· 33· 53 b2

7692 ac
sech6

(
5√

1538

√
−b
c

(
x+

18· 104 b2

7692 c
t

))
. (4.1)

To convert Eq. (3.18) into Eq. (4.1), we set k = 0 and substitute the value of d as d =
769

4· 54
c2

b
.

Solution (3.26) was initially overlooked by Ma [28], but later computed by Duffy and Parkes [10], and subsequently
confirmed by Mancas and Hereman [30]. The solution (21) on page 114002-3 in [30] is given by

u(x, t) = −385· 33· 102 b2

172· 1272 ac
sech4

(
5√

2159

√
−b
c

(
x+

71· 104 b2

172· 1272 c
t

))

×

[
1 + sech2

(
5√

2159

√
−b
c

(
x+

71· 104 b2

172· 1272 c
t

))]
.

(4.2)

To convert Eq. (3.26) into Eq. (4.2), we set k = 0 and substitute the value of d as d =
2159

104
c2

b
.

Regarding the comparison of the two methods, we would like to point out that the reliability, applicability, and
validity of both methods have been tested. Additionally, due to the utilization of different auxiliary equations, the
solutions generated by both methods exhibit distinct characteristics. It is important to note that the advanced
exp(−ϕ(ξ))-expansion method successfully identified novel solutions to the gsKdV equation using the two auxiliary

equations (2.5) and (2.6), in contrast to the auxiliary equation (2.4). However, the modified (G
′
/G)-expansion method

was unsuccessful in solving the gsKdV equation. On the other hand, when it comes to the sKawahara equation, both
methods performed well and provided us with some solutions.

Three fascinating types of traveling wave solutions for solitary wave theory are presented in this study. Some
solutions are described and presented graphically. We created 2D, 3D, and contour plot views in specific finite fields
using Maple’s computational tools. The bright soliton-type solution is presented in Figures 2, 5, and 8, corresponding
to u7, u21, and u41, respectively, for the fixed values of the parameters indicated in the captions. Figures 4, 7, and 9
show the dark solitary wave solution corresponding to u18, u34, and u45, respectively. Figures 1, 3, and 6 show the
multiple dark solitary wave solution corresponding to u3, u12, and u28, respectively, with fixed parameters indicated
in the captions of the figures.

5. Conclusion

In summary, we have successfully obtained more explicit and exact traveling wave solutions to the gsKdV equation
(1.1) and the sKawahara equation (3.29) as a special case. The advanced exp(−ϕ(ξ))-expansion method and the

modified (G
′
/G)-expansion method have been effectively used to achieve the goals of this work. These methods not

only reproduce known solutions but also uncover new solutions that were previously missed by other researchers. The
results indicate that the mentioned equations admit exact traveling wave solutions with different values of arbitrary
coefficients. These solutions represent three types of traveling wave solutions: bright solitons, dark solitary wave
solutions, and multiple dark solitary wave solutions. The results demonstrate that the advanced exp(−ϕ(ξ))-expansion
method is an efficient and reliable approach for discovering new exact solutions for NLEEs in various scientific and
physical fields. The obtained solutions can be utilized by physicists and engineers for more in-depth analysis in different
cases.
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