- [1] S. P. Bhairat and D. B. Dhaigude, Existence of solutions of generalized differential equation with nonlocal condi- tion, Mathematica Bohemica, 144(2) (2019), 203–220.
- [2] L. Byszewski, Theorems about the existence and uniqueness of solutions of semilinear evolution nonlocal Cauchy problem, J. Math. Anal. appl., 162 (1991), 497–505.
- [3] L. Byszewski and H. Alca, Existence of solutions of a semilinear functional-differential evolution nonlocal problem, Nonlinear Anal., 34 (1998), 65–72.
- [4] L. Byszewski and V. Lakshmikantham, Theorem about the existence and uniqueness of a solution of a nonlocal abstract Cauchy problem in a Banach space, Appl. Anal., 40 (1990), 11–19.
- [5] T. B. Jagtap and V. V. Kharat, On Existence of Solution to Nonlinear fractional Integrodifferential System, J. Trajectory, 22(1) (2014), 40–46.
- [6] U. N. Katugampola, New approach to a generalized fractional integral., Appl. Math. Comput. 218 (2011), 860–865.
- [7] U. N. Katugampola, A new approach to generalized fractional derivatives, Bull. Math. Anal. Appl., 6 (2014), 1–15.
- [8] U. N. Katugampola, Existence and uniqueness results for a class of generalized fractional differenital equations, available at https, //arxiv.org/abs/1411.5229, (2016).
- [9] S. D. Kendre, T. B. Jagtap, and V. V. Kharat, On nonlinear fractional integrodifferential equations with nonlocal condition in Banach space, Non. Anal. Diff. Eq., 1(3) (2013), 129–141.
- [10] S. D. Kendre, V. V. Kharat, and T. B. Jagtap, On Abstract Nonlinear Fractional Integrodifferential Equations with Integral Boundary condition, Comm. Appl. Nonl. Anal., 22(3) (2015), 93–108.
- [11] S. D. Kendre, V. V. Kharat, and T. B. Jagtap, On Fractional Integrodifferential Equations with Fractional Non- separated Boundary conditions, Int. Jou. Appl. Math. Sci., 13(3) (2013), 169–181.
- [12] S. D. Kendre, V. V. Kharat and R. Narute, On existence of solution for iterative integro-differential equations, Nonl. Anal. DIffer. Equ., (3) (2015), 123–131.
- [13] V. V. Kharat, On existance and uniqueness of Fractional Integrodifferential Equations with an Integral Fractional Boundary Condition, Malaya J. Matematik, 6(3) (2018), 485–491.
- [14] V. V. Kharat, D. B. Dhaigude, and D. R. Hasabe, On nonlinear mixed fractional integrodifferential inclusion with four-point nonlocal Riemann-Liouville integral boundary conditions, Indian J. Pure Appl. Math., 50(4) (2019), 937–951.
- [15] V. V. Kharat and T. B. Jagtap, Existence of iterative fractional differential equation with non local condition, The Journal of Indian Mathematical Society, 83 (2016), 97–106.
- [16] A. A. Kilbas, H. M. Srivastava, and J. J.Trujillo, Theory and Applications of Fractional Differential Equations, North-Holland Mathematics Studies 204. Elsevier, Amsterdam, 2006.
- [17] S. Krim, S. Abbas, M. Benchohra, and E. Karapinar, Terminal value problem for implicit Katugampola fractional differential equations in b Metric spaces, J. Funct. Spaces, 2021 (2021), 7 pages.
- [18] A. A. Nanwate and S. P. Bhairat, On Nonlocal Terminal value Problems in generalized fractional sense, Palest. J. Math., 11 (Special Issue III) (2022), 62–74.
- [19] D. S. Oliveira and E.Capelas de Oliveira, Hilfer-Katugampola fractional derivative, 37(3) (2018), 3672–3690.
- [20] I. Podlubny, Fractional Differential Equations, Academic Press, San Diego, (1999).
- [21] H. Sussain Shah and M. Rehman, A note on terminal value problems for fractional differential equations on infinite interval, Appl. Math. Lett. 52 (2016), 118–125.
- [22] W. Shreve, Terminal value problems for second order nonlinear differential equations, SIAM J. Appl. Math., 18(4) (1970), 783–791.
- [23] S. R. Tate, V. V. Kharat, and H. T. Dinde, A nonlocal Cauchy problem for nonlinear fractional integrodifferential equations with positive constants, J. Math. Model., 7(1) (2019), 133–151.
- [24] J. Wang and Y. Zhang, Nonlocal initial value problems for differential equations with Hilfer fractional derivative, Appl. Math. Comput. 266 (2015), 850–859.
|