تعداد نشریات | 44 |
تعداد شمارهها | 1,303 |
تعداد مقالات | 16,020 |
تعداد مشاهده مقاله | 52,489,155 |
تعداد دریافت فایل اصل مقاله | 15,216,849 |
تاثیر اولترافیلتراسیون بر خصوصیات ضد اکسایشی پپتیدهای زیست فعال ضایعات ماهی قزل آلای رنگین کمان (Oncorhynchus mykiss) | ||
پژوهش های صنایع غذایی | ||
دوره 33، شماره 2، تیر 1402، صفحه 31-41 اصل مقاله (487.92 K) | ||
نوع مقاله: مقاله پژوهشی | ||
شناسه دیجیتال (DOI): 10.22034/fr.2023.53270.1848 | ||
نویسندگان | ||
اسحق زکی پور رحیم آبادی* 1؛ الناز نامی2؛ معصومه مهربان سنگ آتش3 | ||
1گروه شیلات، دانشکده منابع طبیعی، دانشگاه گیلان، صومعه سرا، ایران | ||
2گروه شیلات، دانشکده منابع طبیعی ، دانشگاه گیلان، گیلان، ایران | ||
3استادیار گروه پژوهشی کیفیت و ایمنی مواد غذایی، پژوهشکده علوم و فناوری مواد غذایی جهاد دانشگاهی، مشهد، ایران | ||
چکیده | ||
زمینه مطالعاتی: تبدیل ضایعات شیلاتی به ترکیباتی با ارزش افزوده، روشی مناسب جهت کاهش آلودگی زیست محیطی و استفاده بهینه از دورریز آبزیان می باشد. هدف: تاثیر اولترافیلتراسیون بر خصوصیات ضد اکسایشی پپتیدهای زیست فعال ضایعات ماهی قزل آلای رنگین کمان (Oncorhynchus mykiss) می باشد. روش کار: در این پژوهش امعاء و احشاء ماهی تهیه شده و چرخ گردید. هیدرولیز پروتئین در شرایط بهینه صورت گرفت و تیمارهای تحقیق شامل تیمار1: غلظت 1% آنزیم آلکالاز (100:1 آنزیم به سوبسترا) و تیمار2: غلظت 2% (100:2 آنزیم به سوبسترا) بودند. ترکیبات تقریبی امعاء و احشاء و درجه هیدرولیز اندازه گیری شد. با استفاده از شاخصهای DPPH وABTS+ خاصیت ضداکسیدانی تیمارها اندازه گیری گردید و از تیمار حاوی خاصیت ضداکسیدانی بالاتر (تیمار2) جهت جزء گیری پپتید زیست فعال توسط غشاهای اولترافیلتر با وزنهایKDa 30>،KDa 10> و KDa3> استفاده شد و مجددا خاصیت ضداکسیدانی وزن های مولکولی مختلف پپتیدها بررسی گردید. نتایج: با افزایش غلظت آنزیم به 2% (تیمار2)، درجه هیدرولیزاسیون و خاصیت ضداکسیدانی افزایش یافت. نتایج مهار رادیکال DPPH و ABTS+ بر وزنهای مولکولی مختلف در این تیمار نشان داد که همه اجزاء پپتیدی از خاصیت ضداکسیدانی برخوردار بودند اما جزء پپتیدی 3> کیلودالتون دارای خاصیت مهارکنندگی بالاتری نسبت به سایر فراکسیون ها بود که مقادیر آن در مهار رادیکال DPPH، 01/0±55/76 و در شاخص مهارکنندگی ABTS+، 05/0±25/88 در غلظتهای برابر 25/1 میلیگرم بر میلیلیتر بود. نتیجه گیری نهایی: درجه هیدرولیز و خاصیت ضداکسیدانی با افزایش غلظت آنزیم افزایش یافته است، همچنین با کاهش وزن مولکولی در پپتید زیست فعال، خاصیت ضداکسیدانی آن افزایش مییابد. با افزایش غلظت آنزیم درجه هیدرولیز و خاصیت ضداکسیدانی افزایش یافته و با کاهش وزن مولکولی در پپتید زیست فعال، خاصیت ضداکسیدانی آن افزایش مییابد. | ||
کلیدواژهها | ||
آنزیم آلکالاز؛ پروتئین هیدرولیز شده؛ قزل آلای رنگین کمان؛ غشای اولترافیلتراسیون؛ پپتید زیست فعال | ||
مراجع | ||
سلیمانی م، سید فخرالدین حسینی ف و نیکخواه م، 1395. ارزیابی فعالیت ضداکسیدانی پروتئین هیدرولیز شده ماهی کیلکای معمولی (Clupeonella cultriventris caspia). علوم و فنون شیلات، 3(2): 95-108.
میرصادقی ح، عالیشاهی ع، صالحیان م و صفری ر، 1394. اثر پروتئین هیدرولیز شده ضایعات ماهی قزل آلای رنگین کمان (Oncorhyncus mykiss) روی محیط کشت باکتری. بهره برداری و پرورش آبزیان، 2(4): 93-109.
مهدابی م، شمسایی مهرجان م و رجبی اسلامی ه، 1400. مقایسه ترکیب تقریبی و پروفایل اسیدهای آمینه پروتئین های هیدرولیز شده گوشت، آرد و پساب کارخانه آرد ماهی (استیک واتر) ماهی کیلکای آنچووی. مجله علمی شیلات ایران، 30 (6): 43-61.
مهرگان نیکو، ع ر، صادقی ماهونک ع ر، قربانی م، طاهری ع، اعلمی م و کمالی ف، 1392. بررسی اثر شرایط هیدرولیز بر فعالیت ضداکسایشی پروتئینهای هیدرولیز شده حاصل از ماهی کاراس (Carassius carassius). نشریه پژوهش و نوآوری در علوم و صنایع غذایی، 2(4): 351-364.
نعمتی م، جوادیان ر و کشاورز م، 1398. تولید پروتئین هیدرولیز شده از ضایعات ماهی زالون (Alosa caspia) با استفاده از آنزیم آلکالاز. نشریه علمی زیست شناسی، 11(43): 87-95.
یاری م، حسینی م، کدیور م، 1401. بررسی ویژگیهای عملکردی پپتیدهای حاصل از هیدرولیز پروتئین آرد گندم سالم توسط پروتئاز موجود در گندم سن زده. نشریه پژوهشهای صنایع غذایی، 32(4): 75-85.
AOAC, 2005. Official Method of Analysis (17thed). Washington, DC: Association of Official Analytical chemists.
Bordbar S, Ebrahimpour A, Zarei M, Abdul Hamid A and Saari N, 2018. Alcalase-generated proteolysates of stone fish (Actinopyga lecanora) flesh as a new source of antioxidant peptides. International Journal of Food Properties 21(1): 1541-1559.
Chalamaiah M, Dinesh Kumar B, Hemalatha R and Jyothirmayi T, 2012. Fish protein hydrolysates: proximate composition, amino acid composition, antioxidant activities and applications: a review. Journal of Food Chemistry 135(4): 3020–3038.
Fang B, Sun J, Dong P, Xue C and Mao X, 2017. Conversion of turbot skin wastes into valuable functional substances with an eco-friendly fermentation technology. Journal of Cleaner Production. Journal of Food Chemistry (156): 367–377.
García-Moreno PJ, Batista I, Pires C, Bandarra NM, Espejo-Carpio FJ, Guadix A and Guadix EM, 2014. Antioxidant activity of protein hydrolysates obtained from discarded Mediterranean fish species. Food Research International (65): 469-476.
Guillén G, López Caballero ME, Alemán A, Lacey AL, Giménez B, Montero García P, 2010. Antioxidant and antimicrobial peptide fractions from squid and tuna skin gelatin, Transworld Research Network 661(2): 89-115.
Gao R, Shu W, Shen Y, Sun Q, Jin W, Li D, Li and Yuan L, 2021. Peptide fraction from Sturgeon muscle by pepsin hydrolysis exerts anti-inflammatory effects in LPS-stimulated RAW264. 7 macrophages via MAPK and NF-κB pathways. Food Science and Human Wellness 1; 10(1): 103-111.
He S, Franco C and Zhang W, 2013. Functions, applications and production of protein hydrolysates from fish processing co-products (FPCP). Food Research International 50(1): 289-297.
Hardy RW, 1991. Pacific Salmon. Oncorhynchus spp. In:Wilson, R.P.(ed) Handbook of Nutrient Requirement of Finfish. CRC Press. Boka Ration 105-121 pp.
Harnedy PA and FitzGerald RJ, 2012. Bioactive peptides from marine processing waste and shellfish: A review. Journal of Functional Foods 4(1): 6–24.
Jun SY, Park PJ, Jung K and Kim K, 2004. Purification and characterization of an antioxidative peptide from enzymatic hydrolysate of yellowfin sole (limanda aspera) frame protein. European Food Research and Technology 219 (1): 20-26.
Jang HL, Shin SR and Yoon KY, 2017. Hydrolysis conditions for antioxidant peptides derived from enzymatic hydrolysates of sandfish (Arctoscopus japonicus). Food Science and Biotechnology 26(5): 1191-1197.
Kristinsson HG and Rasco BA, 2000. Fish protein hydrolysates: production, biochemical, and functional properties, Critical Reviews in Food Science and Nutrition 40(1): 43-81.
Klomklao S and Benjakul S, 2018. Protein hydrolysates prepared from the viscera of skipjack tuna (Katsuwonus pelmamis): antioxidative activity and functional properties, Turkish Journal of Fisheries and Aquatic Sciences 18(1): 69-79.
Lowry OH, Rosebrough NJ., Farr, AL and Randall RJ, 1951. Protein measurement with the Folin phenol reagent. Journal of Biological Chemistryn 193(1): 265- 275.
Li Y, Jiang B, Zhang T, Mu W and Liu J, 2008. Antioxidant and free radicalscavenging activities of chickpea protein hydrolysate (CPH). Food Chemistry 106 (2): 444-450.
Mosquera M, Giménez B, Ramos S, López-Caballero ME, del Carmen Gómez-Guillén M and Monter P, 2014. Antioxidant, ACE-inhibitory and antimicrobial activities of peptide fractions obtained from dried giant squid tunics. Journal of Aquatic Food Product Technology 10 (80): 444-455.
Ma Y, Xiong YL, Zhai J, Zhu H and Dziubla T, 2010. Fractionation and evaluation of radical scavenging peptides from in vitro digests of buckwheat protein. Food Chemistry 118(3): 582–588.
Martysiak-Zurowska D and Wenta W, 2012. A Comparison of ABTS and DPPH Methods for Assessing the Total Antioxidant Capacity of Human Milk. Acta Scientiarum Polonorum. Technologia Alimentaria 11(1): 83-89.
Nazeer RA and Anila Kulandai K, 2012. Evaluation of antioxidant activity of muscle and skin protein hydrolysates from giant kingfish, Caranx ignobilis (Forsskål, 1775). International Journal of Food Science and Technology 47(2): 274-281.
Ovissipour M, Safari R, Motamedzadegan A and Shabanpour B, 2012. Chemical and biochemical hydrolysis of persian sturgeon (Acipenser persicus) visceral protein. Food and Bioprocess Technology 5(2): 460-465.
Ryan JT, Ross RP, Bolton D, Fitzgerald GF and Stanton C, 2011. Bioactive Peptides from Muscle Sources: Meat and Fish Nutrients 3(9): 765-791.
Ramezanzade L, Hosseini SF, Nikkhah M and Arab-Tehrany E, 2018. Recovery of bioactive peptide fractions from rainbow trout (Oncorhynchus mykiss) processing waste hydrolysate. Ecopersia 6(1): 31-40.
Sheriff SA, Sundaram B, Ramamoorthy B and Ponnusamy P, 2014. Synthesis and in vitro antioxidant functions of protein hydrolysate from backbones of Rastrelliger kanagurta by proteolytic enzymes. Saudi Journal of Biological Sciences 21(1): 19-26.
Senphan T and Benjakul S, 2014. Antioxidative activities of hydrolysates from seabass skin prepared using protease from hepatopancreas of Pacific white shrimp. Journal of Functional Foods (6): 147-56.
Vioque J, Clemente A, Pedroche J, Yust MM and Millgn F, 2001. Obtencion yaplicaciones de hidrolizados proteicos. Journal of Grasas Aceites 52 (1): 132-136.
Wang B, Li ZR, Chi CF, Zhang QH and Luo HY, 2012. Preparation and evaluation of antioxidant peptides from ethanol-soluble proteins hydrolysate of Sphyrna lewini muscle. Peptides 36(2): 240–250.
Wang B, Li L, Chi CF, Ma JH, Luo HY and Xu YF, 2013. Purification and characterisation of a novel antioxidant peptide derived from blue mussel (Mytilus edulis) protein hydrolysate. Food Chemistry 138 (2-3):1709-1713.
Xie Z, Huang J, Xu X and Jin Z, 2008. Antioxidant activity of peptides isolated from alfalfa leaf protein hydrolysate. Journal of Food Chemistry 111(2): 370-376.
You L, Zhao M, Regenstein JM and Ren J, 2010. Purification and identification of antioxidative peptides from loach (Misgurnus anguillicaudatus) protein hydrolysate by consecutive chromatography and electrospray ionization- mass spectrometry. Food Research International 43(4): 1167-1173.
Zhong S, Ma C, Lin YC and Luo Y, 2011. Antioxidant properties of peptide fractions from silver carp (Hypophthalmichthys molitrix) processing by-product protein hydrolysates evaluated by electron spin resonance spectrometry. Food Chemistry 126 (4): 1636-1642. | ||
آمار تعداد مشاهده مقاله: 407 تعداد دریافت فایل اصل مقاله: 256 |