تعداد نشریات | 41 |
تعداد شمارهها | 1,130 |
تعداد مقالات | 13,890 |
تعداد مشاهده مقاله | 48,872,106 |
تعداد دریافت فایل اصل مقاله | 12,592,047 |
A second order numerical scheme for solving mixed type boundary value problems involving singular perturbation | ||
Computational Methods for Differential Equations | ||
مقالات آماده انتشار، پذیرفته شده، انتشار آنلاین از تاریخ 14 فروردین 1402 اصل مقاله (1.13 MB) | ||
نوع مقاله: Research Paper | ||
شناسه دیجیتال (DOI): 10.22034/cmde.2023.52094.2178 | ||
نویسندگان | ||
Subal Ranjan Sahu1؛ Jugal Mohapatra ![]() ![]() | ||
1Assistant Professor Department of Mathematics Larambha college, Bargarh, Orissa - 768102, India, | ||
2Natl Inst Technol, Dept Math, Rourkela, India | ||
3Assistant Professor Department of Mathematics Amirta University, Chennai campus, Tamilnadu, INDIA | ||
چکیده | ||
A class of singularly perturbed mixed type boundary value problems is considered here in this work. The domain is partitioned into two subdomains. Convection-diffusion and reaction-diffusion problems are posed on the first and second subdomain, respectively. To approximate the problem, a hybrid scheme which consists of a second order central difference scheme and a midpoint upwind scheme is constructed on Shishkin type meshes. We have shown that the proposed scheme is of second order convergent in the maximum norm which is independent of the perturbation parameter. Numerical results are illustrated to support the theoretical findings. | ||
کلیدواژهها | ||
Singular perturbation؛ mixed problem؛ Bakhvalov-Shishkin mesh؛ Hybrid scheme؛ Uniform convergence | ||
آمار تعداد مشاهده مقاله: 29 تعداد دریافت فایل اصل مقاله: 78 |