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Abstract

A class of singularly perturbed mixed type boundary value problems is considered here in this work. The domain

is partitioned into two subdomains. Convection-diffusion and reaction-diffusion problems are posed on the first

and second subdomain, respectively. To approximate the problem, a hybrid scheme which consists of a second-
order central difference scheme and a midpoint upwind scheme is constructed on Shishkin-type meshes. We have

shown that the proposed scheme is second-order convergent in the maximum norm which is independent of the

perturbation parameter. Numerical results are illustrated to support the theoretical findings.

Keywords. Singular perturbation, Mixed problem, Bakhvalov-Shishkin mesh, Hybrid scheme, Uniform convergence.

2010 Mathematics Subject Classification. 65L10, 65L12.

1. Introduction

Singularly perturbed problems (SPPs) are more often found while modeling different phenomena in applied sciences,
particularly in fluid dynamics, elasticity, chemical reactor theory, etc. Generally, the presence of a small positive
parameter at the highest derivative term makes the problem singularly perturbed. A number of articles are devoted to
solving SPPs with integral boundary conditions [1, 5, 12]. For SPPs, the continuous solution has boundary or interior
layers. It is well known that standard numerical methods are facing several computational difficulties, due to the
multi-scale behavior like rapid variations of the solutions in some regions [6, 7]. As a consequence, finding solutions
for SPPs has become the most challenging and interesting task [8, 23, 24].

Here in this work, we consider the following model SPP of mixed type:
L−ε Y(t) ≡ −εY′′(t) + p(t)Y′(t) + q(t)Y(t) = f(t), t ∈ Ω−,

L+
ε Y(t) ≡ −εY′′(t) + r(t)Y(t) = f(t), t ∈ Ω+,

Y(0) = A, [Y(d)] = Y(d+ 0)− Y(d− 0) = 0, [Y′(d)] = 0, Y(1) = B,

(1.1)

where 0 < ε � 1 is the perturbation parameter and A, B are given constants. The functions p(t), q(t) and r(t) are
sufficiently smooth on Ω− = (0, d) and Ω+ = (d, 1) respectively, with 0 < α ≤ p(t), 0 ≤ q(t), 0 < β ≤ r(t). The
function f is smooth in Ω where Ω = Ω− ∪ Ω+ ∪ {0, 1} and has a simple discontinuity at t = d. Clearly, the solution
y doesn’t possess a continuous second derivative at t = d, that is, Y doesn’t belong to C2(Ω). Under the above
assumptions, the solution of (1.1) has a unique solution in C0(Ω) ∩ C1(Ω) ∩ C2(Ω+ ∪ Ω−) [4].

SPPs of convection-diffusion and reaction-diffusion type with smooth data have been studied extensively [11, 15, 19].
Recently, various kinds of adaptive meshes are used for solving different class of SPPs [9, 13, 21, 25]. However, only
a few results for SPPs having nonsmooth data are reported in the literature [10, 17]. As we know, discontinuity at
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one or more points in the interior domain leads to an interior layer [3, 18]. Miller et al. [16] solved a SPPs with
discontinuous source term by Schwarz method on a Shishkin mesh (S-mesh) and shown it to be first order. In [22],
the Galerkin method was used on a Bakhvalov-Shishkin mesh (B-S mesh) and proved second-order convergent for the
SPPs with discontinuous source terms. In [4], the author have analyzed an inverse-monotone finite volume method on
S mesh for an elliptic SPP with a discontinuous source term. Priyadharshini et.al [20] presented two types of hybrid
scheme on S mesh and got almost second-order convergence.

Since f is discontinuous in (1.1) at the interface point, it leads to severe numerical difficulty for constructing high
accurate schemes. Our main objective in this work is to propose a second-order numerical scheme for SPPSs of
type (1.1). To serve our purpose, a proper hybrid scheme is constructed here which consists of second-order central
difference operator and the midpoint upwind scheme on Shishkin-type meshes namely S mesh and B-S mesh. We
prove that our proposed scheme is uniformly convergent with respect to ε and has an accuracy of second order.

Here, C > 0 denotes a generic constant independent of perturbation and mesh parameters. But C is not necessarily
the same at each occurrence while the subscripted C is a fixed constant. The simple discontinuity of the function s(t)
at t = d ∈ Ω is denoted by [s](d) = s(d+)− s(d−). For any continuous function g(t), we define the supremum norm,
by ‖g‖Ω = supt∈Ω |g(t)| .

2. Properties of the solutions

Lemma 2.1. (Maximum Principle) For any smooth function Z ∈ C0(Ω) ∩ C1(Ω) ∩ C2(Ω+ ∪ Ω−) with Z(0) ≥ 0,
Z(1) ≥ 0 with L−ε Z(t) ≥ 0, t ∈ Ω−, L+

ε Z(t) ≥ 0, t ∈ Ω+ and [Z ′(d)] ≤ 0, then Z(t) ≥ 0,∀t ∈ Ω.

Proof. Suppose there exists t∗ with Z(t∗) = mint∈Ω Z(t) and Z(t∗) < 0. Clearly, t∗ ∈ Ω+ ∪ Ω− or t∗ = d. If

t∗ ∈ Ω+ ∪ Ω− then Z ′′(t∗) ≥ 0 and Z ′(t∗) = 0. Then L−ε Z(t) ≤ 0, t ∈ Ω−, L+
ε Z(t) ≤ 0, t ∈ Ω+, which contradict our

assumptions. Now for t∗ = d, there are two cases.
Case 1: Z(t) is not differentiable at t∗. Since Z attains minimum at t∗, then Z ′(t∗ − 0) ≤ 0, Z ′(t∗ + 0) ≥ 0 and
[Z ′(d)] > 0, which is a contradiction.
Case 2: Z(t) is differentiable at t∗. Then Z ′(t∗) = 0 and there exists a subinterval δt = (t∗ − δ, t∗) with Z(t) ≤ 0,
Z(t∗) ≤ Z(t), t ∈ δt. Let t1 ∈ δt, then there exists t2 ∈ δt such that

Z ′(t2) =
Z(t1)− Z(t∗)

t1 − t∗
> 0,

and t2 ∈ δt such that

Z ′′(t3) =
Z ′(t2)− Z ′(t∗)

t2 − t∗
> 0.

Then t3 ∈ Ω− and L−ε Z(t3) ≤ 0, which again contradict our assumption. Hence, we prove that Z(t) ≥ 0,∀t ∈ Ω. �

Lemma 2.2. If Y ∈ C0(Ω) ∩ C1(Ω) ∩ C2(Ω+ ∪ Ω−), then ‖Y‖Ω ≤ C max
{
|Y(0)|, |Y(1)|, |L−ε Y|, |L+

ε Y|
}
.

Proof. Refer [4] for the proof. �

Decomposing the solution as Y = V + W, with V = V0 + εV1 + ε2V2 + ε3V3. The regular component V ∈ C0(Ω) is
the solution of

L−ε V(t) = f(t), t ∈ Ω−,

L+
ε V(t) = f(t), t ∈ Ω+,

V(0) = y(0), [V′(d)] = [V′0(d)] + ε[V′1(d)] + ε2V[V′2(d)] = 0,V(1) = 0.

(2.1)

Now the layer component W ∈ C0(Ω) satisfies
L−ε W(t) = 0, t ∈ Ω−,

L+
ε W(t) = 0, t ∈ Ω+,

W(0) = 0, [W′(d)] = −[W′(d)],W(1) = Y(1)− V(1).

(2.2)
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Further, we decompose W as W = W1 + W2, where W1 and W2 satisfy:{
W1(t) = 0, t ∈ Ω−,

L+
ε W1(t) = 0, t ∈ Ω+,W1(d) = −[V(d)],W1(1) = Y(1)− V(1),

(2.3)

{
L−ε W2(t) = 0, t ∈ Ω−,W2(0) = 0, [W′2(d)] = −[V′(d)]− [W′1(d)],

L+
ε W2(t) = 0, t ∈ Ω+,W2(1) = 0.

(2.4)

Lemma 2.3. For 0 ≤ l ≤ 4, we have∣∣Vl(t)∣∣ 6 C(1 + ε−3−l),∣∣Wl(t)
∣∣ 6 Cε−l+1/2e−(d−t)α/ε, t ∈ Ω−,∣∣Wl(t)
∣∣ 6 Cε−l/2(e−(t−d)

√
β/ε + e−(1−t)

√
β/ε), t ∈ Ω+.

(2.5)

Proof. Refer [4]. �

3. Discrete problem

The construction and generalization of Shishkin meshes have gained much attention from researchers [6]. However,
in the analysis and construction of the Bakhvalov mesh, a rare contribution is there to date. Here, the hybrid difference
schemes to approximate (1.1) on Shishkin-type meshes are characterized by the choice of transition points. The domain
Ω− is subdivided into [0, d− τ1] and [τ1, d] for some τ1. Similarly Ω+ is subdivided into [d, d+ τ2] [d+ τ2, 1− τ2] and
[1− τ2, 1] for some τ2. Here

τ1 = min
(d

2
,

2

θ1
lnN

)
, and τ2 = min

(1− d
4

,
2

θ2
lnN

)
,

where N ≥ 4 is the number of mesh intervals, θ1 =
α

ε
, θ2 =

√
ε

β
and tm = d. Now, the S mesh is given by

ti =



2(d− τ1)i

m
, if 0 ≤ i ≤ m/2,

(d− τ1) + (i− m

2
)
2τ1
m
, if m/2 ≤ i ≤ m,

d+ (i− m

4
)
4τ2
m
, if m ≤ i ≤ 5m/4,

(d+ τ2) + (i− m

2
)
2(1− d− 2τ2)

m
, if 5m/4 ≤ i ≤ 7m/4,

1− τ2 + (i− m

4
)
4τ2
m
, if 7m/4 ≤ i ≤ N.

(3.1)

The B-S mesh which is an alteration of S-mesh condensed in the layer region by effectively inverting the boundary
layer terms using the idea of Bakhvalov [2]. On Ω−, we consider that, in [0, d− τ1] the mesh is equidistant with N/4

subintervals having the width
4

N
(d − τ1) and in [d − τ1, d] is subdivided into N/4 graded subintervals by inverting

e−θ1(d−t)/2 linearly in it. That is

e−θ1(d−ti)/2 = C1i+ C2, i = N/4, · · · ,N/2, (3.2)

with tN/4 = d− τ1 and tN/2 = d. Now putting the value of i = N/4 in (3.2) and substituting the value tN/4 = d− τ1,
we get

e−θ1(d−tN/4)/2 = C1
N

4
+ C2 ⇒

2

N
= C1

N

4
+ C2. (3.3)
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Similarly, by putting i = N/2 in (3.2), and substituting the value tN/2 = d we have

e−θ1(d−tN/2)/2 = C1
N

2
+ C2 ⇒ 1 = C1

N

2
+ C2, (3.4)

Now, solving (3.3) and (3.4), we get C1 =
4

N
− 8

N2
and C2 =

4

N
− 1. Hence,

ti =
1

2
+

2

θ1
log

((
4− 8

N

) i
N

+
( 4

N
− 1
))

, if N/4 ≤ i < N/2.

On Ω+, the interval [d, d+ τ2] is subdivided into N/8 graded subintervals by inverting e−θ2t/2. That is

e−θ2ti/2 = C3i+ C4, i = N/2, · · · , 5N/8,

with tN/2 = d and t5N/8 = τ2. After solving the above, we obtain

ti = −1

2
− 2

θ2
log

((16

N
− 8
) i
N

+ 1

)
, if N/2 ≤ i < 5N/8.

The subintervals [d + τ2, 1 − τ2] is divided into N/4 subintervals with length
4

N
(1 − d − 2τ2). Now, in the interval

[1− τ2, 1], we invert the function e−θ2(1−t)/2 to obtain the mesh point in it. For i = 7N/2, · · · ,N,

e−θ2(1−ti)/2 = C5i+ C6,

with t7N/8 = 1− τ2 and tN = 1. After solving the above, we obtain

ti = 1 +
2

θ2
log

((
8− 16

N

) i
N

+
(16

N
− 7
))

, if 7N/8 ≤ i ≤ N.

Now, the B-S mesh is given by

ti =



4(d− τ1)
i

N
, if 0 ≤ i ≤ N/4,

1

2
+

2

θ1
log

((
4− 8

N

) i
N

+
( 4

N
− 1
))

, if N/4 ≤ i ≤ N/2,

−1

2
− 2

θ2
log

((16

N
− 8
) i
N

+ 1

)
, if N/2 ≤ i ≤ 5N/8,

(d+ τ2) + 4(1− d− 2τ2)
( i
N
− 1

2

)
, if 5N/8 ≤ i ≤ 7N/8,

1 +
2

θ2
log

((
8− 16

N

) i
N

+
(16

N
− 7
))

, if 7N/8 ≤ i ≤ N.

(3.5)

The above mesh points in terms of mesh generating function can be written as

φ(s) =



4(d− τ1)s, s =
i

N
, 0 ≤ i ≤ N/4,

1

2
+

2

θ1
φ1(s), s =

i

N
, N/4 ≤ i ≤ N/2,

−1

2
− 2

θ2
φ2(s), s =

i

N
, N/2 ≤ i ≤ 5N/8,

(d+ τ2) + 4(1− d− 2τ2)
(
s− 1

2

)
, s =

i

N
, 5N/8 ≤ i ≤ 7N/8,

1 +
2

θ2
φ3(s), s =

i

N
, 7N/8 ≤ i ≤ N,
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where s is uniform in [0, 1] and φ1, φ2 and φ3 are monotonically increasing functions. The mesh generating functions
are given by

φ1(s) = − log

((
4− 8

N

) i
N

+
( 4

N
− 1
))

, s ∈ [1/4, 1/2] and φ1(1/4) = log(N/2), φ1(1/2) = 0,

φ2(s) = − log

((16

N
− 8
) i
N

+ 1

)
, s ∈ [1/2, 3/4] and φ2(1/2) = 0, φ2(1/2) = log(N/2),

φ3(s) = − log

((
8− 16

N

) i
N

+
(16

N
− 7
))

, s ∈ [3/4, 1] and φ3(3/4) = log(N/2), φ3(1) = 0.

Also the corresponding characterizing functions ϕ1, ϕ2 and ϕ3 are given by

ϕ1 = e−φ1 , ϕ2 = e−φ2 , ϕ3 = e−φ3 .

The difference operators D−, D0, δ2 are defined as:

D−Yi =
Yi − Yi−1

hi
, D0Yi =

Yi+1 − Yi−1

hi+1 + hi
, δ2Yi =

2

hi + hi+1

(
Yi+1 − Yi
hi+1

− Yi+1 − Yi
hi

)
.
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(a) Shishkin mesh (b) Bakhvalov mesh

Figure 1. Mesh construction with ε = 10−4, N = 32.

Using the above, the proposed scheme on Ω
N

takes the form

LNhsYi = fi, for i = 1, · · · , N − 1, (3.6)

where

LNhsYi =


LNmusYi, for i = 1, · · · ,m/2,
L−Ncds Yi, for i = m/2, · · · ,m− 1,

LNt Yi, for i = N/2,

L+N
cds Yi, for i = m+ 1, · · · ,N − 1,

(3.7)

and

fi =


fi−1/2, i = 1, · · · ,m/2,
fi, i = m/2, · · · ,m− 1,

h2

−2ε−h2pm−1
fm−1 − h3

2ε pm+1, i = N/2,

fi, i = m+ 1, · · · ,N − 1.

(3.8)
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Explicitly using the notation of [26], we have

LNmusYi = −εδ2Yi + pi−1/2D
−Yi − qi−1/2Yi = fi−1/2,

L−Ncds Yi = −εδ2Yi + piD
−Yi − qiYi = fi,

L+N
cds Yi = −εδ2Yi + riYi = fi,

and

LNt Yi =
−Ym+2 + 4Ym+1 − 3Ym

2hm+1
− Ym−2 − 4Ym−1 + 3Ym

2hm−1
= 0.

Lemma 3.1. Assume that
N

lnN
≥ 4‖p‖

α
. Also, if Z(t0) ≥ 0, Z(tN ) ≥ 0 and LNhs(t) ≥ 0 for i = i = 0, · · · ,N, then

Z(ti) > 0 for i = i = 0, · · · ,N.

Proof. One can refer to [20] for the proof. �

4. Error estimates

We shall analyze the errors in Ω−, Ω+, and t = d in this section. Let us rewrite the hybrid scheme (3.7) as:

[LNhsY
N ] =

[ANY N ]i+1 − [ANY N ]i
hσ,i

= 0, for i = 1, · · · ,N − 1,

where [ANY N ]i = ε
Yi − Yi−1

hi
+ σpiYi + (1 − σ)pi−1Yi−1 −

i−1∑
j=1

qi−1/2Yi−1/2 and hσ,i = (1 − σ)hi + σhi+1. Note that

for σ = 1/2, we recover the central difference scheme, while for σ = 1 the midpoint scheme is obtained.
Now, we provide the error associated with the scheme (3.7) using the S mesh and the B-S mesh which is the main

result of this work.

Theorem 4.1. The error associated with the hybrid scheme (3.7) satisfies the following bounds:∣∣∣∣∣∣Y− Y N ∣∣∣∣∣∣ ≤ C N−2 ln2 N on S-mesh,∣∣∣∣∣∣Y− Y N ∣∣∣∣∣∣ ≤ CN−2, on B-S mesh. (4.1)

Proof. The error associated for S-mesh satisfies the bound
∣∣∣∣∣∣Y− Y N ∣∣∣∣∣∣ ≤ CN−2 ln2 N. The proof is given in Theorem

5.1 of [4]. For the proof of B-S mesh, we consider the following cases.
Case 1: For the first domain Ω−: Let us integrate (1.1) over [tj , tj+1], we have

(SY)(tj+1)− (SY)(tj)−
∫ tj+1

tj

(p(t)Y(t)− f(t))dt = 0,

where (SY)(t) = εY′(t)− b(t)Y(t). Now we introduce the notation

[ShsV] = ε
Vi − Vi−1

hi
− σpiVi − (1− σ)pi−1Vi−1.

For any arbitrary mesh function Vi and Wi there exists an hσ (see [14]) such that∣∣∣∣∣∣V −W ∣∣∣∣∣∣ ≤ C max
i=1,··· ,N−1

∣∣∣∣∣
N−1∑
j=i

hσ,j [L
N
hsV

N − LNhsWN ]j

∣∣∣∣∣. (4.2)
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Using the above bound (4.2), we have

∣∣∣∣Y− Y N ∣∣∣∣ ≤ C max
i=1,··· ,N−1

∣∣∣∣∣
N−1∑
j=i

[ShsY
N ]− SY

∣∣∣∣∣
+C max

i=1,··· ,N−1

∣∣∣∣∣
N−1∑
j=i

∫ tj+1

tj

(p(t)Y(t)− f(t))dt− (hj + hj + 1)(pj − fj)/2

∣∣∣∣∣.
For finding the bounds for the first term we take two cases: σ = 1 and σ = 1/2. For σ = 1, we have

[ShsY
N ]− SY = ε

{Yi − Yi−1

hi
− Y′

}
=

ε

hi

∫ tj

tj−1

Y′′(z)(z − ti−1)dz,

by Taylor’s expansion of y about tj and using 2ε < β∗hi, we have

∣∣∣[ShsY N ]− SY
∣∣∣ ≤ C ∫ xj

tj−1

(1 + ε−2eβz/ε)(z − ti−1)dz.

Now for σ = 1/2, we have

[ShsY
N ]− Sy = ε

{Yi − Yi−1

hi
− Y′i−1/2

}
+
piYi + pi−1Yi−1

2
− pi−1/2Yi−1/2.

Using Taylor’s expansion for Y and Y′ about tj , we have

ε
∣∣∣{Yi − Yi−1

hi
− Y′i−1/2

}∣∣∣ ≤ 3ε

2

∫ tj

tj−1

|Y′′′(t)|(z − ti−1)dz,

and ∣∣∣piYi + pi−1Yi−1

2
− pi−1/2Yi−1/2

∣∣∣ ≤ 3

2

∫ xj

tj−1

|(p′′Y′′)(t)|(z − ti−1)dz.

So ∣∣∣[ShsY N ]− SY
∣∣∣ ≤ C ∫ tj

tj−1

(1 + ε−2eβz/ε)(z − ti−1)dz.

Finally, for the right side of (4.3) use the Taylor series expansions of Y and q about xj+1 to obtain∣∣∣ ∫ tj+1

tj

(p(t)Y(t)− f(t))dx− (hj + hj + 1)(pj − fj)/2
∣∣∣ ≤ C(hj + hj + 1)

∫ tj+1

tj

(1 + ε−2eβz/ε)(z − ti−1)dz.

Combining the above estimates we get∣∣∣∣Y− Y N ∣∣∣∣
Ω− ≤ C max

i=1,··· ,N−1

∫ ti+1

ti

(1 + ε−2eβz/ε)(z − ti−1)dz

≤ C

2
max

i=1,··· ,N−1

(∫ ti+1

ti

(1 + ε−2eβz/ε)dz
)2

≤ CN−2. (4.3)

Case 2: For the second domain Ω+: On the side, we discretize the problem by the central difference scheme [14]. So
by using a similar process we get ∣∣∣∣y − Y N ∣∣∣∣

Ω+ ≤ CN−2. (4.4)
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Case 3: At the point of interface t = d:∣∣LNt Y N (tm)− LY(tm)
∣∣ ≤ ∣∣∣LNt Y N (tm)− h2

−2ε− h2pm−1
fm−1 −

h3

2ε
fm+1

∣∣∣
≤ Cm−2

(
τ2
1 ε
−5/2 + τ2

1 ε
−1
)
. (4.5)

Now, If we consider the barrier function as φ±(ti) = ϕ(ti)±
∣∣Y N − y∣∣, where

ϕ(ti) =

{
Cm−2 + Cm−2τ2

1 ε
−5/2(ti − d+ τ1) ti ∈ Ω−,

Cm−2 + Cm−2τ2
2 ε
−1(1− ti), ti ∈ Ω+.

(4.6)

and applying Lemma 3.1, we get ∣∣∣∣Y− Y N ∣∣∣∣
t=d
≤ CN−2. (4.7)

This completes the proof. �

5. Numerical results

Example 5.1. Consider the test problem:
−εY′′(t) + (1 + t2)Y′(t) = 2, t ∈ (0, 0.5),

−εY′′(t) + (4tx3)Y(t) = 1.8t, t ∈ (0.5, 1),

Y(0) = Y(1) = [Y(0.5)] = [Y′(0.5)] = 0.

(5.1)

Example 5.2. Consider the following model:
−εY′′(t) + (1 + cos(πx))Y′(t) + (1 + sin(π2 t))Y(t) = 1 + sin(πt) cos(πt), t ∈ (0, 0.5),

−εY′′(t) + (1 + cos(π2x))Y(t) = 3 + 2 cos(π2 t) sin(π2 t)), t ∈ (0.5, 1),

Y(0) = Y(1) = [Y(0.5)] = [Y′(0.5)] = 0.

(5.2)

Since the exact solutions are not available, so we use the idea of a double mesh principle. That is, the solution is
computed on a mesh that is twice as fine keeping the transition parameter fixed [15]. The maximum pointwise error
is defined as follows:

ENε = ‖Yj − Ỹj‖ΩN ,

where Ỹj is the interpolation of Yj , on Ω2N to ΩN . The corresponding rate is given by

RNε = log2

(
ENε
E2N
ε

)
.

Tables 1 and 2 represent ENε and RNε of the hybrid scheme for Example 5.1 and Example 5.2 respectively. In Table 3,
we compare ENε generated by the proposed scheme for Example 5.2 with the results given in [4]. The log-log plots of
the maximum pointwise error on S mesh and B-S mesh are shown in Figure 3. The use of B-S mesh produces more
accurate results as compared to S mesh which is already proved theoretically. Further from these tables and figures,
one can notice the parameter uniform nature and the second-order convergence of the proposed scheme.

Conclusions

This paper studies the numerical solution for a class of mixed type SPPs of type (1.1). A hybrid scheme on the
Shishkin-type meshes are constructed and second-order convergent error estimates are derived. Numerical results are
presented which are in agreement with the theoretical findings.
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Table 1. ENε and RNε of the proposed scheme for Example 5.1

ε = 10−6 ε = 10−8 ε = 10−10

N S mesh B-S mesh S mesh B-S mesh S mesh B-S mesh
5.5390e-3 4.7216e-3 5.5035e-3 4.7083e-3 5.5000e-3 4.7069e-3

64 1.3560 1.8849 1.3561 1.8845 1.3561 1.8845
2.1639e-3 1.2785e-3 2.1499e-3 1.2752e-3 2.1485e-3 1.2748e-3

128 1.5184 1.9626 1.5221 1.9586 1.5225 1.9582
7.5537-4 3.2801e-4 7.4852e-4 3.2808e-4 7.4784e-4 3.2809e-4

256 1.5930 1.9869 1.5924 1.9776 1.5923 1.9767
2.5039e-4 8.2753e-5 2.4823e-4 8.3301e-5 2.4802e-4 8.3357e-5

512 1.6496 2.0147 1.6515 1.9954 1.6517 1.9933
7.9809e-5 2.0478e-5 7.9017e-5 2.0892e-5 7.8937e-5 2.0936e-5

1024 1.6193 2.0413 1.6918 2.0009 1.6919 1.9972

Table 2. ENε and RNε of the proposed scheme for Example 5.2

ε = 10−4 ε = 10−7 ε = 10−9

N S mesh B-S mesh S mesh B-S mesh S mesh B-S mesh
1.0544e-2 7.0687e-3 8.1949e-3 7.0850e-3 8.1954e-3 7.0853e-3

64 1.1272 1.8883 1.5273 1.8769 1.5273 1.8769
4.8271e-3 1.9242e-3 2.8430e-3 1.9290e-3 2.8432e-3 1.9291e-3

128 1.3833 1.8772 1.6041 1.9455 1.6041 1.9455
1.8505e-3 5.4629e-4 9.3516e-4 5.0082e-4 9.3523e-4 4.9969e-4

256 1.5348 1.8165 1.6574 1.7025 1.6884 1.7025
6.3865e-4 1.7114e-4 2.9646e-4 1.5338e-4 2.9016e-4 1.5345e-4

512 1.6652 1.7745 1.5472 1.4092 1.5472 1.4092
1.8789e-4 6.6522e-5 1.0144e-4 5.7540e-5 9.7024e-5 5.7785e-5

1024 1.6193 1.7632 1.6918 2.0009 1.6919 1.9972

Table 3. Comparison of ENε for Example 5.2

ε = 2−10 ε = 2−18

N Results in [4] Our results Results in [4] Our results
32 1.80e-2 1.95e-2 1.80e-2 1.73e-2
64 7.94e-3 5.04e-3 7.99e-3 8.19e-3
128 2.79e-3 1.98e-3 3.03e-3 2.93e-3
256 7.09e-4 9.41e-4 1.04e-3 1.04e-3
512 1.78e-4 3.44e-4 3.41e-4 3.64e-4
1024 4.44e-5 1.05e-4 1.07e-4 1.29e-4
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Figure 2. Solution plots with N = 64, ε = 10−4.
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Figure 3. Loglog plots of maximum pointwise error.
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Figure 4. Error plots with N = 64, ε = 10−4.
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