- [1] A. Akbulut, M. Kaplan, and M. K. A. Kaabar, New conservation laws and exact solutions of the special case of the fifth-order KdV equation, J. Ocean Eng. Sci., 7(4) (2022), 377–382.
- [2] N. H. Aljahdaly, et al. The analysis of the fractional-order system of third-order KdV equation within different operators, Alex. Eng. J., 61(12) (2022), 11825–11834.
- [3] O¨ . Arnaldsson, Involutive moving frames, Differential Geom. Appl., 69 (2020), 101603.
- [4] O¨ . Arnaldsson, Involutive moving frames II; The Lie-Tresse theorem, Differential Geom. Appl. 79 (2021), 101802.
- [5] M. Bazghandi, Lie Symmetries and Similarity Solutions of Phi-Four Equation, Indian J. Math. 61(2) (2019), 187–197.
- [6] A. Bihlo, J. Jackaman, and F. Valiquette, Invariant variational schemes for ordinary differential equations, Stud. Appl. Math., 148(3) (2022), 991–1020.
- [7] Y. A. Chirkunov, Generalized equivalence transformations and group classification of systems of differential equa- tions, J. Appl. Mech. Tech. Phys. 53 (2012), 147–155.
- [8] E. Cartan, Les probl´emes d´equivalence, in Oeuvres completes, Part II, Vol. 2, Gauthiers-Villars, Paris, (1953), 1311–1334.
- [9] W. Chen, J. Li, C. Miao, and J. Wu, Low regularity solutions of two fifth-order KdV type equations, J. Anal. Math., 107 (2009), 221–238.
- [10] J. Diehl, R. Preiß, M. Ruddy, and N. Tapia, The Moving-Frame Method for the Iterated-Integrals Signature: Orthogonal Invariants, Found. Comput. Math., (2022), 1–61.
- [11] M. Fels and P. J. Olver, Moving coframes. I. A practical algorithm, Acta Appl. Math., 51 (1998), 161–213.
- [12] M. Fels and P. J. Olver, Moving coframes. II. Regularization and theoretical foundations, Acta Appl. Math., 55 (1999), 127–208.
- [13] P. A. Griffiths, On Cartan’s method of Lie groups and moving frames as applied to uniqueness and existence questions in differential geometry, Duke Math. J., 41 (1974), 775–814.
- [14] Gh. Haghighatdoost, M. Bazghandi, and F. Pashaie, Differential Invariants of coupled Hirota-Satsuma KDV Equations, Kragujev. J. Math., 49(5) (2025), 793–805.
- [15] G. H. Halphen, Sur les invariant diff´erentiels, in : Oeuvres, Vol. 2, Gauthiers-Villars, Paris, (1913), 197–253.
- [16] Y. Hu, F. Zhang, and X. Xin, Lie symmetry analysis, optimal system and exact solutions of variable-coefficients Sakovich equation, J. Geom. Phys., 184 (2023), 104712.
- [17] P. E. Hydon, Symmetry Methods for Differential Equations, Cambridge University Press, Cambridge, UK, 2000.
- [18] D. Kaya and S. M. El-Sayed, On a generalized fifth order KdV equations, Phys. Lett. A, 310(1) (2003), 44–51.
- [19] T. Kawaharara, Oscillatory solitary waves in dispersive media, J. Phys. Soc. Japan., 33(1) (1972), 260–264.
- [20] F. Klein, A comparative review of recent researches in geometry, Bull. Am. Math., 2(10) (1893), 215–249.
- [21] I. A. Kogan, Inductive Approach to Cartan’s Moving Frame Method with Applications to Classical Invariant Theory, 2000, University of Minnesota, Phd dissertation.
- [22] B. Kruglikov and V. Lychagin, Global Lie–Tresse theorem, Sel. Math., 22 (2016), 1357–1411.
- [23] R. Li, X. Yong, Y. Chen, and Y. Huang. Equivalence transformations and differential invariants of a generalized cubic–quintic nonlinear Schr¨odinger equation with variable coefficients, Nonlinear Dyn., 102 (2020), 339–348.
- [24] S. Lie, and G. Scheffers, Vorlesungen u¨ber continuierliche Gruppen mit geometrischen und anderen Anwendungen, B.G. Teubner, Leipzig, 1893.
- [25] H. Liu, J. Li, and L. Liu, Lie symmetry analysis, optimal systems and exact solutions to the fifth-order KdV types of equations, J. Math. Anal. Appl., 368(2) (2010), 551–558.
- [26] Q. Meng and C. Zhang, A third-order KdV solution for internal solitary waves and its application in the numerical wave tank, J. Ocean Eng. Sci., 1(2) (2016), 93–108.
- [27] F. Oliveri, Lie symmetries of differential equations: classical results and recent contributions, Symmetry, 2(2) (2010), 658–706.
- [28] P. J. Olver, Equivalence, invariants and symmetry, Cambridge University Press, 1995.
- [29] P. J. Olver, Applications of Lie groups to differential equations, Vol. 107. Springer Science & Business Media, 2000.
- [30] P. J. Olver and J. Pohjanpelto, Maurer-Cartan forms and the structure of Lie pseudo-groups, Selecta Math., 11 (2005), 99–126.
- [31] P. J. Olver and J. Pohjanpelto, Moving frames for Lie pseudo-groups, Canadian J. Math., 60 (2008), 1336–1386.
- [32] P. J. Olver and F. Valiquette, Recursive moving frames for Lie pseudo-groups, Results Math., 73(2) (2018), 1–64.
- [33] P. J. Olver, Generating differential invariants, J. Math. Anal. Appl., 333 (2007), 450–471.
- [34] P. J. Olver Differential invariants of surfaces, Differential Geom. Appl., 27(2) (2009), 230–239.
- [35] P. J. Olver and J. Pohjanpelto. Differential invariant algebras of Lie pseudo-groups, Adv. Math., 222(5) (2009), 1746–1792.
- [36] G. G. Polat and P. J. Olver, Joint differential invariants of binary and ternary forms, Port. Math., 76(2) (2020), 169–204.
- [37] M. Sabzevari, Convergent Normal Form for Five Dimensional Totally Nondegenerate CR Manifolds in C4, J. Geom. Anal., 31(8) (2021), 7900–7946.
- [38] A. Tresse, Sur les invariants diff´erentiels des groupes continus de transformations, Acta Math., 18 (1894), 1–88.
- [39] A. M. Wazwaz, The extended tanh method for new solitons solutions for many forms of the fifth-order KdV equations, Appl. Math. Comput., 184(2) (2007), 1002-1014.
- [40] G. Wang, X. Liu, and Y. Zhang, Lie symmetry analysis to the time fractional generalized fifth-order KdV equation, Commun. Nonlinear Sci. Numer. Simul., 18(9) (2013), 2321–2326.
- [41] G. Wang, T. Z. Xu, and X. Q. Liu, New explicit solutions of the fifth-order KdV equation with variable coefficients, Bull. Malays. Math. Sci. Soc, 37(3) (2014), 769–778.
- [42] X. Yan, J. Liu, J. Yang, and X. Xin, Lie symmetry analysis, optimal system and exact solutions for variable- coefficients (2+ 1)-dimensional dissipative long-wave system J. Math. Anal. Appl., 518(1) (2023), 126671.
- [43] X. Yong, X. Yang, L. Wu, and J. Gao, Equivalence transformations of a fifth-order partial differential equation with variable-coefficients, Appl. Math. Lett., 123 (2022), 107564.
|