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Abstract

In this paper, we study the algebraic structure of differential invariants of a fifth-order KdV equation, known as

the Kawahara KdV equation. Using the moving frames method, we locate a finite generating set of differential

invariants, recurrence relations, and syzygies among the differential invariants generators of the equation. We prove
that the differential invariant algebra of the equation can be generated by two first-order differential invariants.
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1. Introduction

The KdV types of equations are well-known nonlinear evolution equations (NLEEs) which are a model for many
physical phenomena. Many works have been done on investigating KdV equations, especially on the third-order KdV
equation ut + αuux + βuxxx = 0 (e.g. [2, 26]). However, in some cases, for instance, when the coefficient of the
equation becomes very small or zero, the third-order KdV equation can not present a good model for dispersive waves.
Kawahara proposes a fifth-order KdV type of equation that describes dispersive waves for these cases [19]. Since then,
the fifth-order KdV types are investigated in several papers (e.g. [1, 18, 39–41]). The general form of the KdV types
of equations is written as follows

ut + βuxxx − µuxxxxx =
∂

∂x
f(u, ux, uxx), (1.1)

where β, µ are constant with µ 6= 0 and f(u, ux, uxx) is a smooth function.
In this paper, we consider the fifth-order KdV type of equation as follows:

ut + αuux + βuxxx − µuxxxxx = 0, (1.2)

where α,β, and µ > 0 are constant.
The equation (1.2) is known as the Kawahara KdV equation [9]. Since the value of β does not affect the differential

invariants of equation (1.2), without disturbing the generality, we set β equal to one and consider the equation:

ut + αuux + uxxx − µuxxxxx = 0. (1.3)

Using the moving frames method, we study the structure of algebras of differential invariants of the equation (1.3).
As far as we know, a complete structure of algebras of differential invariants of the equation (1.3) is not obtained so
far.

The concept of differential invariants comes to literature by Halphen and is studied in great detail by Lie [15, 28].
In a program titled Erlangen [20], Felix Klein presented a method to consider various geometries. The Felix Klein’s
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method is based on differential invariants. In 1894, Tresse proposed a theorem and extended the Lie’s work to pseudo-
group actions [22, 38]. Later, Cartan continued the consideration of differential invariants and developed a method
known as Cartan’s equivalence problem [28]. The Cartan’s equivalence problem is an enhancement of Felix Klein’s
method [21]. Cartan continued his research and developed Cartan’s moving frame approach [8]. Cartan’s main effort
was to obtain the equivalent geometric objects and to classify the objects using differential invariants. A modern
version of Cartan’s moving frames approach can be found in Fels and Olver works [11, 12]. In recent years, the moving
frames method is developed by a number of researchers [3, 4, 32, 35] and is used in several papers [6, 10, 37].

The idea of differential invariants is to study a geometric object by acting as a group on the object and study
the differential invariants of the group action. Indeed, to analyze geometric objects, we look for systems that remain
invariant by a group transformation.

Differential invariants have many applications. The most prominent one is obtaining and studying equivalent
objects. Other applications include finding similarity solutions for PDEs, and calculation of invariant variational
problems.

There are many methods to study the structure of differential invariants of a system of equations. In this paragraph,
we consider three approaches that are the most efficient and popular methods among researchers. We regard the
advantages and disadvantages of these methods and compare them. The most famous one is the Lie method. The Lie
method is well described in several monographs [17, 29] and is used in several papers [5, 14, 16, 27, 42]. Two main
drawbacks of the Lie method are (1) the method needs effort for integration and (2) the method does not give complete
information about the algebraic structure of differential invariants. The second method is the Cartan equivalence
method [8, 28]. The Cartan’s method gives complete information about the algebraic structure of differential invariants.
In the Cartan method, one has to express the problem in terms of a coframe. The main disadvantage of this method is
the complexity of the calculation. The third method is the moving frames method. In the moving frames approach, the
structure of differential invariant algebras of the equation is yielded from knowledge of the infinitesimal determining
equations and setting an appropriate cross-section normalization. It just contains simple calculations. Moreover, it
gives a complete algebraic structure of differential invariants. However, in the moving frames method, the freeness of
action is required. Fortunately, one can make the action free by prolonging the action.

This paper is arranged as follows: In section 2.1, we review essential preliminaries of the moving frames method.
In section 3, using the moving frames method, we locate a set of generating differential invariants for equation (1.3)
and obtain recurrence relations and syzygies among the generation differential invariants.

2. Preliminaries

We define coordinates z = (x, u) on M , where the first α components x = (x1, ..., xα) is considered as independent
variables, and the latter β = m − α components u = (u1, ..., uβ) is considered as independent variables. We denote
the induced coordinates on the jet space Jn by z(n) = (x, u(n)), where it is consisting of independent variables xi,
dependent variables uµ, and their derivatives uµJ , of order #J ≤ n.

The function I : Jn → R is a differential invariant for the group G, if the infinitesimal generator prolongation of
the group G annihilates the function I everywhere, so X(n)(I(z(n))) = 0, where X(n) is the n-th prolongation of the
infinitesimal generator.

There is a finite number of low order invariants that generates all the differential invariants by repeated invariant
differentiation [24, 38]. Indeed, there exists a finite system of differential invariants I1, ...I`, and α invariant differential
operators D1, ...,Dα that preserve the differential invariant algebra, such that every differential invariant can be locally
expressed as a function of the invariants generators and their invariant derivatives, namely DJIk = Dj1Dj2 · DjkIk
for k = #J ≥ 0. The order of differentiation is important, since generally the invariant differential operators need
not commute. Moreover, the differentiated invariants are generally not functionally independent, however they have
certain functional relations. Indeed, these relations are syzygies H(. . .DJIk . . .) ≡ 0 [35].

2.1. Moving Frames Method. Cartan proposed the moving frames method to solve the equivalence problem [13].
Later, Fels and Olver [11, 12] expand the moving frames method to a completely general, algorithmic, equivariant
framework which enables us to find and classify equivalence submanifolds, differential invariants, and their syzygies
[30–32].
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In the moving frames method, for a given system, we consider an action of a group on the system and prolong
the group action until it becomes a free action. Freeness enables us to construct moving frames Next, we choose a
cross-section to the prolonged group orbits and construct a moving frame. After finding a moving frame, we substitute
the obtained moving frame into the prolonged group action. This substitution is recognized as invariantazation process
which is used to construct complete systems of differential invariants, invariant differential operators, and invariant
differential forms.

A cross-section is an embedded submanifold Kn ⊂ Jn, that intersect the prolonged group orbits transversally. A
right moving frame associates to each z(n) ∈ Jn is the unique group element g = ρ(n)(z(n)) ∈ G that maps z(n) to
the cross-section g.zn = ρ(n)(z(n)).z(n) ∈ K [32]. A coordinate cross-section is specified by setting the r = dimG
coordinates to aproprate constants (i.e. K = {z1 = c1, . . . , zr = cr}).

The right moving frame g = ρ(n)(z(n)) associated with the coordinate cross-section

K = {z1 = c1, . . . , zr = cr}, (2.1)

is yielded by solving

Z1 = g1.z1 = c1, . . . , Zr = gr.zr = cr, (2.2)

where g = (g1, . . . , gr) are group parameters. Equations (2.2) are called normalization equations.
A complete system of functionally independent invariants is found by replacing the moving frame for the group

parameters with the last coordinate expressions [36].

I(z(n)) = g.z(n) = ρ(n)(z(n)).z(n). (2.3)

The normalization components (2.2), which are constants, are called the phantom differential invariants. Other
components (2.2) are called fundamental invariants.

In particular,

Hi(z, u(n)) = ι(xi), IαJ (z, u(n)) = ι(uαJ ), (2.4)

denotes the normalized differential invariants.
Replacing the group parameters by their moving frame ρ(n)(z, u(n)) [35], the invariantization process

ι : F (z, u(n))→ I(z, u(n)) = F (ρ(n)(z, u(n)).(z, u(n))), (2.5)

transforms the differential function F to their differential invariant counterparts I = ι(F ) [35].
Even though invariantization respect all algebraic operators, it does not respect differentiation. i.e. D[ι(F )] 6=

ι[D(F )]. However, the missed expression can be found by the recurrence formula [12]. Let F (x, u(n)) be a differential
function and ι(F ) its moving frame invariantization. Then

Di[ι(F )] = ι[Di(F )] +

r∑
κ=1

Rκi ι[X
(n)
κ (F )], (2.6)

where Rκi are the Maurer-Cartan invariants and X
(n)
κ are the nth prolongations of the infinitesimal generators Xκ [36].

The invariant differential operators Di transform differential invariants to differential invariants. In general, they
do not commute, but they satisfy in linear commutation relations in form of

[Di,Dj ] =

p∑
k=1

Y kijDk, i, j = 1, . . . , p, (2.7)

where the coefficients Y kij are certain differential invariants called the commutator invariants [35].
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3. Differential Invariants of The Fifth-Order KdV Equation (1.3)

We start by considering the infinitesimal Lie transformations for equation (1.3), which are of the form:

x→ x+ λξx(x, t, u), t→ t+ λξt(x, t, u), u→ u+ λϕ(x, t, u), (3.1)

with the symmetry generator

X = ξt(x, t, u)
∂

∂t
+ ξx(x, t, u)

∂

∂x
+ ϕ(x, t, u)

∂

∂u
. (3.2)

The Lie algebra of the symmetries is generated by the following three vector fields [9, 25]:

X1 =
∂

∂x
, X2 =

∂

∂t
, X3 = αt

∂

∂x
+

∂

∂u
. (3.3)

The action of equation (1.3) symmetry group on M is obtained by composing the flows of the symmetry algebra
basis (3.3), which is given by

(X,T, U) = exp(λ1X1) ◦ exp(λ2X2) ◦ exp(λ3X3),

(3.4)

where λ1, . . . , λ3 are the group parameters. Calculating (3.4) lead to

X = αλ3 t+ x+ λ1, T = t+ λ2, U = u+ λ3.

The dual implicit differential operators are defined as follows [31]

DXi =

p∑
j=1

W i
jDxj , W j

i = (DxjXi)−1, (3.5)

where Dxi are total derivatives and are

Dxi =
∂

∂xi
+

q∑
α=1

∑
J

uαJ,j
∂

∂uαJ
. (3.6)

From (3.5),

DX = Dx, DT = −αλ3Dx +Dt. (3.7)

We choose the coordinate cross-section that determined by the three normalization equations

X = 0, T = 0, U = 1, (3.8)

By solving the normalization equations for the group parameters,

λ1 = αt u− α t− x, λ2 = −t, λ3 = −u+ 1. (3.9)

Substituting (3.9) into (3.7), we obtain invariant differential operators

D1 = Dx, D2 = α(u− 1)Dx +Dt, (3.10)

where D1 = ι(Dx) and D2 = ι(Dt).
Invariantization the last coordinate functions provides a complete system of fundamental differential invariants:

I00 = ι(u) = 1, (3.11)

I10 = ι(ux) = D1(u) = ux,

I01 = ι(ut) = D2(u) = α(u− 1)ux + ut,

I30 = ι(uxxx) = uxxx,

I50 = ι(uxxxxx) = uxxxxx,

...
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where

Iij = ι(ui,j) = ι

(
∂i+j u

∂xi∂tj

)
. (3.12)

Performing the invariantization process, we can express equation (1.3) in terms of the differential invariants as

I01 + αI00I10 + I30 − µ I50 = 0. (3.13)

Our next step is to locate a finite generating set of differential invariants for the equation (1.3). Differential invariants
are produced order by order by applying the invariant differential operators to the differential invariants.

According to (2.6), the recurrence formula for the differential invariants are

DiHj = δji +

r∑
κ=1

ι(ξjκ)Rκi , (3.14)

D1Ijk = Ij+1,k +

r∑
κ=1

ι(ϕjkκ )Rκ1 ,

D2Ijk = Ij,k+1 +

r∑
κ=1

ι(ϕjkκ )Rκ2 ,

where Rκ1 and Rκ2 are the Maurer-Cartan invariants, and ξj and ϕjkκ are the coefficients of ∂
∂xj

and ∂
∂ujk

in the

infinitesimal generator prolongation of Xκ respectively [36]. Solving the resulting phantom recurrence formula produces
the Maurer-Cartan invariants

R1
1 = −1, R2

1 = 0, R3
1 = −I10, (3.15)

R1
2 = 0, R2

2 = −1, R3
2 = −I01,

Substituting these expressions back into (3.14) yields the recurrence formula that specifies the form of the differential
invariant algebra completely.

D1I10 = I20, D2I10 = I11, (3.16)

D1I01 = I11 + α I2
10, D2I01 = I02 + I01I01,

D1I11 = I21 + α I20I10, D2I11 = I21 + α I20I01,

D1I20 = I30, D2I20 = I21,

D1I02 = I12 + 2α I11I10, D2I02 = I03 + 2α I11I01,

D1I21 = I31 + α I30I10, D2I02 = I03 + α I30I01,

D1I12 = I22 + 2α I21I10, D2I02 = I03 + 2α I21I01,

D1I30 = I40, D2I30 = I31,

D1I03 = I13 + 3α I12I10, D2I03 = I04 + 3α I12I01,

D1I40 = I50, D2I40 = I41,

D1I31 = I41 + α I40I10, D2I31 = I32 + α I40I01,

D1I22 = I32 + 2α I31I10, D2I22 = I23 + 2α I31I01,

D1I13 = I23 + 3α I22I10, D2I13 = I23 + 3α I22I01,

D1I04 = I14 + 4α I13I10, D2I04 = I05 + 4α I13I01,
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D1I50 = I60, D2I50 = I51,

D1I41 = I51 + α I50I10, D2I04 = I05 + α I50I01,

D1I32 = I42 + 2α I41I10, D2I32 = I33 + 2α I41I01,

D1I23 = I33 + 3α I32I10, D2I23 = I24 + 3α I32I01,

D1I14 = I24 + 4α I23I10, D2I14 = I15 + 4α I23I01,

D1I05 = I15 + 5α I14I10, D2I05 = I06 + 5α I14I01,

The sixth orders are

D1I60 = I70, D2I60 = I61, (3.17)

D1I51 = I61 + α I10, D2I51 = I52 + α I01,

D1I42 = I52 + 2α I51I10, D2I42 = I43 + 2α I51I01,

D1I33 = I43 + 3α I42I10, D2I33 = I34 + 3α I42I01,

D1I24 = I34 + 4α I33I10, D2I24 = I25 + 4α I33I01,

D1I15 = I25 + 5α I24I10, D2I15 = I16 + 5α I24I01,

D1I06 = I16 + 6α I15I10, D2I06 = I07 + 6α I15I01.

Theorem 3.1. The set {I10, I01} generates the entire differential invariant algebra of the equation (1.3).

Proof. The recurrence formula (3.16) and (3.17) implies all differential invariants up to the seventh-order are generated
by functions of I10 and I10 and their derivatives. By continuing the differentiation, we find that all differential invariants
are generated by the first-order functions of I10 and I10 and their derivatives. �

Finally, the invariant differential operators D1 and D2 satisfy the commutator relation

[D1,D2] = Y1D1 + Y2D2, (3.18)

where coefficients named the commutator invariants. As a result of general recurrence formulae for invariant horizontal
differential one-forms, [12, 34], we have

Y1 =

r∑
κ=1

[
Rκ2 ι(Dxξ

1
κ)−Rκ1 ι(Dtξ

1
κ)
]
, Y2 =

r∑
κ=1

[
Rκ2 ι(Dxξ

2
κ)−Rκ1 ι(Dtξ

2
κ)
]
,

in which ξiκ is the coefficients of ∂xi , in the infinitesimal generator Xκ.
Substituting formula (3.15) for the Maurer-Cartan invariants yields

Y1 = αI10, Y2 = 0. (3.19)

Thus, from (3.18) and (3.19), we have

[D1,D2] = αI10D1, (3.20)

As discussed in section 2.1. The basic syzygy is in form of

D2I10 −D1I01 − α I2
10 = 0, (3.21)

which is a consequence of the recurrence formulae.
The generating differential invariants {I10, I01}, the recurrence formulas (3.16) and (3.17), along with the commu-

tation relations (3.20), provide a complete specification of the structure of the differential invariant algebra of equation
(1.3).
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4. Discussions

In this paper, we considered a special case of the KdV equation (1.1), with the specific right-hand side f(u, ux, uxx) =
αuux. We used classical Lie point transformations (3.1), which do not preserve the differential structure of equations
containing arbitrary functions. Fortunately, equivalence transformations preserve the differential structure of equations
containing arbitrary functions, e.g. [7, 23, 43]. Obtaining equivalence transformations for equation (1.1) and applying
our method to the equation is desirable for further research.

5. Conclusions

In this paper, using the moving frames method, we located a finite generating set of differential invariants for the
Lie symmetry group of a fifth-order KdV type, known as Kawahara KdV equation, and we obtained the recurrence
relations and syzygies among the generating differential invariants. We proved that the differential invariant algebra
of the equation can be generated by two first-order differential invariants. In our approach, we also obtained the
Maurer-Cartan invariants. Our results can be used for the construction of sets of PDEs, which possess the same
symmetry properties, and it is important for not only mathematics but also physical interpretation.
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[38] A. Tresse, Sur les invariants différentiels des groupes continus de transformations, Acta Math., 18 (1894), 1–88.
[39] A. M. Wazwaz, The extended tanh method for new solitons solutions for many forms of the fifth-order KdV

equations, Appl. Math. Comput., 184(2) (2007), 1002-1014.
[40] G. Wang, X. Liu, and Y. Zhang, Lie symmetry analysis to the time fractional generalized fifth-order KdV equation,

Commun. Nonlinear Sci. Numer. Simul., 18(9) (2013), 2321–2326.
[41] G. Wang, T. Z. Xu, and X. Q. Liu, New explicit solutions of the fifth-order KdV equation with variable coefficients,

Bull. Malays. Math. Sci. Soc, 37(3) (2014), 769–778.
[42] X. Yan, J. Liu, J. Yang, and X. Xin, Lie symmetry analysis, optimal system and exact solutions for variable-

coefficients (2+ 1)-dimensional dissipative long-wave system J. Math. Anal. Appl., 518(1) (2023), 126671.
[43] X. Yong, X. Yang, L. Wu, and J. Gao, Equivalence transformations of a fifth-order partial differential equation

with variable-coefficients, Appl. Math. Lett., 123 (2022), 107564.


	1. Introduction
	2. Preliminaries
	2.1. Moving Frames Method

	3. Differential Invariants of The Fifth-Order KdV Equation (1.3)
	4. Discussions
	5. Conclusions
	References

