- [1] M. Ali Akbar and Hj Mohd Ali Norhashidah, Solitary wave solutions of the fourth order Boussinesq equation through the exp (-ϕ(η))-expansion method, SpringerPlus, (2014), 1–6.
- [2] L. Akinyemi, M. Senol, and O. S. Iyiola, Exact solutions of the generalized multidimensional mathematical physics models via sub-equation method, Mathematics and Computers in Simulation, 182 (2021), 211–233.
- [3] L. Akinyemi, P. Veeresha, M. Senol, and H. Rezazadeh, An efficient technique for generalized conformable PochhammerChree models of longitudinal wave propagation of elastic rod, Indian Journal of Physics, (2022), 1–10.
- [4] L. M. B. Alam and X. Jiang, Exact and explicit traveling wave solution to the time-fractional phi-four and (2+ 1) dimensional CBS equations using the modified extended tanh-function method in mathematical physics, Partial Differential Equations in Applied Mathematics, 4 (2021), 1–11.
- [5] M. N. Alam, I. Talib, O. Bazighifan, D. N. Chalishajar, and B. Almarri, An analytical technique implemented in the fractional Clannish Random Walkers Parabolic equation with nonlinear physical phenomena, Mathematics, 9(8) (2021), 801.
- [6] M. N. Alam and M. S. Osman, New structures for closed-form wave solutions for the dynamical equations model related to the ion sound and Langmuir waves, Communications in Theoretical Physics, 73(3) (2021), 035001.
- [7] M. N. Alam and C. Tun, New solitary wave structures to the (2+ 1)-dimensional KD and KP equations with spatio-temporal dispersion, Journal of King Saud University-Science, 32(8) (2020), 3400–3409.
- [8] M. N. Alam and C. Tun, Construction of soliton and multiple soliton solutions to the longitudinal wave motion equation in a magneto-electro-elastic circular rod and the Drinfeld-Sokolov-Wilson equation, Miskolc Mathematical Notes, 21(2) (2020), 545–561.
- [9] M. N. Alam and X. Li, Exact traveling wave solutions to higher order nonlinear equations, Journal of Ocean Engineering and Science, 4(3) (2019), 276–288.
- [10] F. Alizadeh, M. S. Hashemi, and A. H. Badali, Lie symmetries, exact solutions, and conservation laws of the non- linear time-fractional Benjamin-Ono equation, Computational Methods for Differential Equations, 10.(3) (2022), 608–616.
- [11] E. A. Az-Zobi, Peakon and solitary wave solutions for the modified Fornberg-Whitham equation using simplest equation method, International Journal of Mathematics and Computer Science, 14(3) (2019), 635–645.
- [12] E. A. Az-Zobi, New kink solutions for the van der Waals p-system, Mathematical Methods in the Applied Sciences, 42(18), (2019), 6216–6226.
- [13] F. Bouchaala, M. Y. Ali, J. Matsushima, Y. Bouzidi, M. S. Jouini, E. M.Takougang, and A. A. Mohamed, Estimation of Seismic Wave Attenuation from 3D Seismic Data: A Case Study of OBC Data Acquired in an Offshore Oilfield, Energies, 15(2) (2022), 534.
- [14] F. Bouchaala, M. Y. Ali, J. Matsushima, Compressional and shear wave attenuations from walkway VSP and sonic data in an offshore Abu Dhabi oilfield, Comptes Rendus. Goscience, 353(1) (2021), 337–354.
- [15] E. Bonyah, Z. Hammouch, and M. E. Koksal, Mathematical Modeling of Coronavirus Dynamics with Conformable Derivative in LiouvilleCaputo Sense, Journal of Mathematics, (2022), 2022.
- [16] Y. Cenesiz and A. Kurt, New fractional complex transform for conformable fractional partial differential equations, Journal of Applied Mathematics, Statistics and Informatics, (2016), 41–47.
- [17] R. Hilfer, Fractional diffusion based on Riemann-Liouville fractional derivatives, The Journal of Physical Chem- istry B, 104(16) (2000), 3914–3917.
- [18] O. A. Ilhan, J. Manafian, H. M. Baskonus, and M. Lakestani, Solitary wave solitons to one model in the shallow water waves, The European Physical Journal Plus, 136(3) (2021), 337.
- [19] M. R. Islam, Application of Exp ( ϕ(ξ))-expansion method for Tzitzeica type nonlinear evolution equations, Journal for Foundations and Applications of Physics, 4(1) (2016), 8–18.
- [20] F. Jarad, T. Abdeljawad, and Z. Hammouch, On a class of ordinary differential equations in the frame of Atan- ganaBaleanu fractional derivative, Chaos, Solitons & Fractals, 117 (2018), 16–20.
- [21] N. Kadkhoda and H. Jafari. Analytical solutions of the GerdjikovIvanov equation by using exp (-ϕ(ξ))-expansion method, Optik, 139 (2017), 72–76.
- [22] N. Kadkhoda, Application of Fan sub-equation method to complex nonlinear time fractional Maccari system, Mathematics and Computational Sciences, 3(2) (2022), 32–40.
- [23] R. Khalil, M. Al Horani, A. Yousef, and M. Sababheh, A new definition of fractional derivative, Journal of computational and applied mathematics, 264 (2014), 65–70.
- [24] M. E. Koksal, Stability analysis of fractional differential equations with unknown parameters, arXiv preprint arXiv:1709.05402, (2017).
- [25] M. E. Koksal, Time and frequency responses of non-integer order RLC circuits, AIMS Mathematics, 4(1) (2019), 64–78.
- [26] M. Lakestani, J. Manafian, A. R. Najafizadeh, and M. Partohaghighi, Some new soliton solutions for the nonlinear the fifth-order integrable equations, Computational Methods for Differential Equations, 10(2) (2022), 445–460.
- [27] J. Manafian and M. Lakestani, Interaction among a lump, periodic waves, and kink solutions to the fractional generalized CBSBK equation, Mathematical Methods in the Applied Sciences, 44(1) (2021), 1052–1070.
- [28] J. Matsushima, M. Y. Ali, and F. Bouchaala, Propagation of waves with a wide range of frequencies in digital core samples and dynamic strain anomaly detection: carbonate rock as a case study, Geophysical Journal International, 224(1) (2021), 340–354.
- [29] M. Mirzazadeh, L. Akinyemi, M. Senol, and K. Hosseini, A variety of solitons to the sixth-order dispersive (3+ 1)-dimensional nonlinear time-fractional Schrodinger equation with cubic-quintic-septic nonlinearities, Optik, 241 (2021), 166318.
- [30] K. S. Nisar, L. Akinyemi, M Inc, M. Senol, M. Mirzazadeh, A. Houwe, S. Abbagari, and H. Rezazadeh, New perturbed conformable Boussinesq-like equation: Soliton and other solutions, Results in Physics, 33 (2022), 105200.
- [31] A. Ozkan and E. M. Ozkan, Exact solutions of the space time-fractional Klein-Gordon equation with cubic non- linearities using some methods, Computational Methods for Differential Equations, 10(3) (2022), 674–685.
- [32] E. M. Ozkan and M. Akar, Analytical solutions of (2+1)-dimensional time conformable Schrodinger equation using improved sub-equation method, Optik, 267 (2022), 169660.
- [33] J. M. Qiao, R. F. Zhang, R. X. Yue, H. Rezazadeh, and A. R. Seadawy, Three types of periodic solutions of new (3+1)dimensional BoitiLeonMannaPempinelli equation via bilinear neural network method, Mathematical Methods in the Applied Sciences, 45(9) (2022): 5612–5621.
- [34] H. Rahman, M. I. Asjad , N. Munawar, F. Parvaneh, T. Muhammad, A. A. Hamoud, H. Emadifar, F. K. Hamasalh, Azizi, and M. Khademi, Traveling wave solutions to the Boussinesq equation via Sardar sub-equation technique, AIMS Mathematics, 7(6) (2022), 11134–11149.
- [35] A. Rani, A. Zulfiqar, J. Ahmad, and Q. M. U. Hassan, New soliton wave structures of fractional Gilson-Pickering equation using tanh-coth method and their applications, Results in Physics, 29 (2021), 104724.
- [36] J. Sabiu, A. Jibril, and A. M. Gadu, New exact solution for the (3+1) conformable spacetime fractional modified Kortewegde-Vries equations via Sine-Cosine Method, Journal of Taibah University for Science, 13(1) (2019), 91–95.
- [37] U. Sadiya, M. Inc, M. A. Arefin, and M. H. Uddin, Consistent traveling waves solutions to the non-linear time fractional KleinGordon, and Sine-Gordon equations through extended tanh-function approach, Journal of Taibah University for Science, 16(1) (2022), 594–607.
- [38] M. Senol, Analytical and approximate solutions of (2+1)-dimensional time-fractional Burgers-Kadomtsev- Petviashvili equation, Communications in Theoretical Physics, 72(5) (2020), 055003.
- [39] H. M. Susan and S. A. Ekhlass, The Exact Solution of Fractional Coupled EW and Coupled MEW Equations Using Sine-Cosine Method, Journal of Physics: Conference Series,IOP Publishing, 1897(1) (2021).
- [40] H. Wang, M. N. Alam, O. A. Ilhan, G. Singh, and J. Manafian, New complex wave structures to the complex Ginzburg-Landau model, AIMS Mathematics, 6(8) (2021), 8883–8894.
- [41] A. M. Wazwaz, Painlev analysis for new (3+1)-dimensional BoitiLeonMannaPempinelli equations with constant and time-dependent coefficients, International Journal of Numerical Methods for Heat & Fluid Flow, 30(9) (2020), 4259–4266.
- [42] J. Zhang, X. Wei, and Y. Lu, A generalized (G′/G)-expansion method and its applications, Physics Letters A, 372(20) (2008), 3653–3658.
- [43] S. Zhang, J. L. Tong, and W. Wang, A generalized (G′/G)-expansion method for the mKdV equation with variable coefficients, Physics Letters A, 372(13) (2008), 2254–2257.
|