- [1] M. Abbaszadeh and M. Dehghan, Meshless upwind local radial basis function-finite difference technique to simulate the time-fractional distributed-order advection-diffusion equation, Eng. Comput., (2019), 1–17.
- [2] T. M. Atanackovic, L. Oparnica, and S. Pilipovic, On a nonlinear distributed order fractional differential equation, J. Math. Anal. Appl., 328(1) (2007), 590–608.
- [3] R. L. Bagley and P. J. Torvik, On the existence of the order domain and the solution of distributed-order equations, Int. J. Appl. Math., 1(7) (2000), 865–882.
- [4] A. T. Benjamin, and J. J. Quinn, Proofs that really count: the art of combinatorial proof, Mathematical Association of America, 2003.
- [5] D. Boyadzhiev, H. Kiskinov, M. Veselinova, and A. Zahariev, Stability analysis of linear distributed order fractional systems with distributed delays, Fract. Calc. Appl. Anal., 20(4) (2017), 914.
- [6] M. Caputo, Distributed order differential equations modelling dielectric induction and diffuion, Fract. Calc. Appl. Anal., 4 (2001), 421–442.
- [7] M. Caputo, Elasticita e dissipazione, Zanichelli, Bologna, Italy, 1969.
- [8] M. Caputo, Mean fractional-order-derivatives differential equations and filters, Ann. dell’Universita di Ferrara, 41(1) (1995), 73–84.
- [9] M. Caputo, and M. Fabrizio, Applications of new time and spatial fractional derivatives with exponential kernels, Prog. Fract. Differ. Appl., 2(1) (2016), 1–11.
- [10] C. Canuto, M. Y. Hussaini, A. Quarteroni, and T. A. Zang, Spectral methods, fundamentals in single domains, Springer, Berlin, 2006.
- [11] T. Eftekhari and S. M. Hosseini, A new and efficient approach for solving linear and nonlinear time-fractional diffusion equations of distributed order, Comput. Appl. Math., 41(6) (2022), 1–22.
- [12] T. Eftekhari and J. Rashidinia, A new operational vector approach for timefractional subdiffusion equations of distributed order based on hybrid functions, Math. Methods Appl. Sci., (2022).
- [13] T. Eftekhari, J. Rashidinia, and K. Maleknejad, Existence, uniqueness, and approximate solutions for the general nonlinear distributed-order fractional differential equations in a Banach space, Adv. Differ. Equ., 2021(1) (2021), 1–22. https://doi.org/10.1186/s13662-021-03617-0
- [14] N. J. Ford, M. L. Morgado, and M. Rebelo, An implicit finite difference approximation for the solution of the diffusion equation with distributed order in time, Electron, Trans. Numer. Anal. 44 (2015), 289–305.
- [15] S. Guo, L. Mei, Z. Zhang, and Y. Jiang, Finite difference/spectral-Galerkin method for a two-dimensional distributed-order time-space fractional reaction-diffusion equation, Appl. Math. Lett., 85 (2018), 157–163.
- [16] Z. Jiao, Y. Chen, and I. Podlubny, Distributed-order dynamic system: stability, simulation, applications and perspectives, Springer, New York, 2012.
- [17] E. Kryszing, Introductory functional analysis with applications, Wiley, New York, 1978.
- [18] J. Li, F. Liu, L. Feng, and I. Turner, A novel finite volume method for the Riesz space distributed-order diffusion equation, Comput. Math. Appl., 74(4) (2017), 772–783.
- [19] K. Maleknejad, J. Rashidinia, and T. Eftekhari, Numerical solutions of distributed order fractional differential equations in the time domain using the Mn¨tz-Legendre wavelets approach, Numer. Methods Partial Differ. Equ., 37(1) (2021), 707–731.
- [20] M. Morgado, M. Rebelo, L. Ferras, and N. Ford, Numerical solution for diffusion equations with distributed order in time using a Chebyshev collocation method, Appl. Numer. Math. 114 (2017), 108–123.
- [21] H. S. Najafi, A.Refahi Sheikhani, and A. Ansari, Stability analysis of distributed order fractional differential equa- tions, Abstr. Appl. Anal., 2011 (2011).
- [22] Z. Odibat and S.Momani Application of variational iteration method to nonlinear differential equations of frac- tional order, Int. J. Nonlinear Sci. Numer. Simul., 1 (2006), 15–27.
- [23] M. Pourbabaee and A. Saadatmandi, A novel Legendre operational matrix for distributed order fractional differ- ential equations, Appl. Math. Comput., 361 (2019), 215–231.
- [24] P. Rahimkhani, Y. Ordokhani, and P. M. Lima, An improved composite collocation method for distributed-order fractional differential equations based on fractional Chelyshkov wavelets, Appl. Numer. Math., 145 (2019), 1–27.
- [25] J. Rashidinia, T. Eftekhari, and K. Maleknejad, A novel operational vector for solving the general form of dis- tributed order fractional differential equations in the time domain based on the second kind Chebyshev wavelets, Numer. Algorithms, 88(4) (2021), 1617–1639.
- [26] S. Sabermahani and Y. Ordokhani, Fibonacci wavelets and Galerkin method to investigate fractional optimal control problems with bibliometric analysis, J. Vib. Control, 27(15-16) (2021), 1778–1792.
- [27] S. Sabermahani, Y. Ordokhani, and P. Rahimkhani, Application of Two-Dimensional Fibonacci Wavelets in Fractional Partial Differential Equations Arising in the Financial Market, Int. J. Appl. Comput., 8(3) (2022), 1–20.
- [28] S. Sabermahani, Y. Ordokhani, and S.A. Yousefi, Fibonacci wavelets and their applications for solving two classes of time-varing delay problems, Optim. Control Appl. Methods, 41(2) (2020), 395–416.
- [29] S. Sabermahani, Y. Ordokhani, and S.A. Yousefi, Fractional-order Fibonacci-hybrid functions approach for solving fractional delay differential equations, Eng. Comput., 36 (2020), 795–806.
- [30] X. Wang, F. Liu, and X. Chen, Novel second-order accurate implicit numerical methods for the Riesz space distributed-order advection-dispersion equations, Adv. Math. Phys., 2015 (2015).
- [31] B. Yuttanan and M.Razzaghi, Legendre wavelets approach for numerical solutions of distributed order fractional differential equations, Appl. Math. Model., 70 (2019), 350–364.
- [32] X. Zheng, H. Liu, H. Wang, et al., An Efficient Finite Volume Method for Nonlinear Distributed-Order Space- Fractional Diffusion Equations in Three Space Dimensions, J. Sci. Comput., 80 (2019), 1395–1418.
|