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Abstract

..

This manuscript investigates a computational method based on fractional-order Fibonacci functions (FFFs) for
solving distributed-order (DO) fractional differential equations and DO time-fractional diffusion equations. Extra

DO fractional derivative operator and pseudo-operational matrix of fractional integration for FFFs are proposed.
To evaluate the unknown coefficients in the FFF expansion, utilizing the matrices, an optimization problem
relating to considered equations is formulated. This approach converts the original problems into a system of
algebraic equations. The approximation error is proposed. Several problems are proposed to investigate the

applicability and computational efficiency of the scheme. The approximations achieved by some existing schemes
are also tested conforming to the efficiency of the present method. Also, the model of the motion of the DO
fractional oscillator is solved, numerically.
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1. Introduction

The idea of DO fractional derivative is raised by Caputo [7]. Then, the concept was extended by himself [8] and
some mathematicians. This concept is used in the scientific model of some phenomena. Then, It has been considered
by some researchers.

For example, the existence and the uniqueness of a class of DO equations are investigated in [2]. This equation is
arisen in DO models of viscoelasticity and system identification theory. The existence of the solution of DO equations
is investigated by Torvik and Bagley [3].

The authors in [5] perused the stability of linear DO fractional systems with distributed delays. Also, Saberi Najafi
et al. analyzed the stability of DO of fractional differential equations [21].

However, there is a difficult task to solve the problems. So, it is necessary to develop an approximate algorithm is
suggested. So far, some procedures dealing numerically with DO fractional equations have been presented.

Improved composite collocation method [24], Legendre wavelets method [31], finite difference/spectral-Galerkin
method [15], meshless upwind local radial basis function-finite difference method [1], Müntz-Legendre wavelet method
[19], the second kind Chebyshev wavelet method [25], Jacobi wavelet method [11], and Legendre hybrid function [12]
are examples of numerical techniques proposed by some researches.

The diffusion equation can appear in the mathematical modeling of many phenomena in the economy, medical
science, physics, etc. However, these equations are not effective for modeling abnormal diffusion processes in complex
environments, because of the long profile in the spatial or memristive distribution. Also, fractional diffusion equations
with the fractional derivative on the spatial derivative are used for studying Markovian processes. A study on a spatial
fractional derivative was presented in [9]. In recent years, it has been found that the single discriminant order is not
suitable for representing phenomena where the discriminant order varies within a certain range. Distributed order
fractional differential equations were first introduced by Caputo [6]. The time-distributed order fractional equation
can model processes that lack power-law scaling over the time domain, such as the ultraslow diffusion in which the
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particle cloud propagates with logarithmic velocity. The authors in [13] proposed a computational method based
on the second kind Chebyshev wavelets and shifted fractional-order Jacobi polynomials to solve linear and nonlinear
distributed order time-fractional diffusion equations.

Spatially distributed fractional-order equations offer more flexibility in representing medium actions and spatial
interactions with fluids, such as acceleration of superdiffusion. Another class of these equations is the Riesz space
distributed order equation which is solved and obtained second-order accuracy [30]. Also, a finite volume method was
proposed for solving Riesz space distributed order diffusion equation [18]. A Crank-Nicolson finite volume approxi-
mation was presented for solving the nonlinear distributed order space-fractional diffusion equations in three space
dimensions [32].

Now, given the above discussion, an optimization scheme based on fractional-order Fibonacci functions is developed
to the solution of DO fractional differential equations (FDEs) and DO time-fractional diffusion equations.

Concerning the advantage of Fibonacci polynomials in [28], we consider a set of fractional functions named FFFs.
The functions were introduced in [29] to define fractional order Fibonacci-hybrid functions. In this study, we apply
FFFs for developing an efficient numerical technique for solving the following problems.

* DO fractional differential equation:

∫ b

a

τ(γ)Dγ
t u(t)dγ + ωu(t) = G(t), t ∈ [0, 1], (1.1)

subject to the following constraints

u(l)(0) = u0,l, l = 0, 1, · · · , ⌈b⌉ − 1. (1.2)

* DO time-fractional diffusion equations

∫ b

a

τ(γ)
∂γU

∂tγ
(x, t) =

∂2U

∂x2
(x, t) +G(x, t), (x, t) ∈ [0, 1]× [0, 1], (1.3)

subject to

U(x, 0) = φ(x), U(0, t) = ϕ0(t), U(1, t) = ϕ1(t),

where, ω is constant, and Dγ shows the fractional derivative in the Caputo type which is defined in [26]. a
and b are positive numbers. τ(γ) is a non-negative smooth weight function and [16]

∫ 1

0

τ(γ)dγ = C > 0.

Fibonacci polynomials are some advantages that have been mentioned in different studies. For instance, the
advantages of Fibonacci polynomials over shifted Legendre polynomials are listed in [27, 28]

• Fibonacci polynomials have fewer terms than the shifted Legendre polynomials, which reduces CPU time using
Fibonacci polynomials.

• The coefficient of individual terms in Fibonacci polynomials is smaller than corresponding ones in shifted
Legendre polynomials, which reduces CPU time using Fibonacci polynomials.

• The integration operational matrix of Fibonacci polynomials has less error than the same operational matrix
for shifted Legendre polynomials.

Then, the properties of these polynomials are also inherited to the fractional-order Fibonacci functions. In addition,
fractional-order polynomials have two degrees of freedom (M ;α) but polynomials have one degree of freedom (M).

Also, in the procedure of deriving the Riemann-Liouville pseudo-operational matrix, the factor tγ takes out from the
approximation process which causes errors in calculations. This work helps to improve the accuracy of the technique.
Then, features of the fractional-order Fibonacci functions and the pseudo-operational matrix create good conditions
to get appropriate results.
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On the other hand, the main idea of spectral methods is to express the solution of the equation as the sum of the
basic functions and then derive the coefficients to minimize the error between the approximate and exact solutions in
a suitable sense. Among the common types of spectral methods are the collocation method, Petrov-Galerkin method,
and the tau method. Here, we present another appropriate scheme to achieve the coefficients which still guarantee the
minimum value of approximation error. The use of the least square approximation method based on the Riemann-
Liouville pseudo-operational matrix for solving considered a problem with the initial and boundary conditions. Indeed,
converting the considered problems with their conditions into one system is another advantage of our technique because
greatly decreases the computational calculation while maintaining a higher level of accuracy.

The rest of this manuscript comes as follows. Section 2 recalls the fundamental feature of Fibonacci polynomials
and FFFs. Section 3 defines a pseudo-operational matrix of fractional integration and extra DO fractional operator
for these functions. Section 4 suggests an algorithm to find the solution of two classes of problems. Error estimation is
presented in section 5. Section 6 analyses the mentioned problems that illustrate the accuracy of the present scheme.
Section 7 summarises the conclusions.

2. Functions

Here, we recall some concepts which are used in this study.

2.1. Fibonacci Polynomials. A natural generalization of Fibonacci numbers is the Fibonacci polynomials defined
recursively by [4] F0(x) = 1,

F1(x) = x,
Fm(x) = xFm−1(x) + Fm−2(x).

(2.1)

When x = 1, the initial conditions and recurrence simply generate the Fibonacci numbers [4]. Inductively, it is
clear that Fm(x) is an mth degree polynomial and therefore has as follows [29]

Fm(x) =

⌊m/2⌋∑
i=0

(
m− i
i

)
xm−2i, m ≥ 0. (2.2)

2.2. Fractional-order Fibonacci functions. Given the definition Fibonacci polynomials in Eq. (2.2) and on the
interval [0, 1], FFFs are defined as follows [29]

Fα
m(t) =

⌊m/2⌋∑
i=0

(
m− i
i

)
tα(m−2i), m ≥ 0, (2.3)

where the mentioned functions are constructed explicitly utilizing the change of variable t → tα(α > 0).

3. New achievements

The section is devoted to presenting pseudo-operational matrix of fractional integration and extra distributed-order
fractional derivative operator for FFFs.

3.1. Fractional integral pseudo-operational matrix. Here, we extract an explicit pseudo-operational matrix
related to fractional integration of FFFs. To this aim, let

Φα(t) = [Fα
0 (t), F

α
1 (t), · · · , Fα

M−1(t)]
T . (3.1)

The Riemann-Liouville integral of the vector Φα(t) in relation (3.1) can be represented as follows

IγΦα(t) ≃ P(γ, α, t)Φα(t), (3.2)
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where P(γ, α, t) = tγP(γ, α) is fractional integral pseudo-operational matrix for FFFs. P(γ, α) and P(γ, α, t) are
derived in the following manner.

Due to equations (2.3)-(3.1) and properties of Riemann-Liouville fractional integral presented in [26], we get

IγFα
m(t) =

⌊m/2⌋∑
i=0

(
m− i
i

)
Iγtα(m−2i) (3.3)

= tγ
⌊m/2⌋∑
i=0

(
m− i
i

)
Γ(α(m− 2i) + 1)

Γ(α(m− 2i) + 1 + γ)
tα(m−2i), m = 0, 1, · · · ,M − 1.

Now, by expanding tα(m−2i), i = 0, 1, · · · , ⌊m/2⌋, m = 0, 1, · · · ,M − 1, regarding FFFs, we have

tα(m−2i) ≃
M−1∑
j=0

ajF
α
j (t),

so due to relation (3.3), we achieve

IγFα
m(t) ≃ tγ

⌊m/2⌋∑
i=0

(
m− i
i

)
Γ(α(m− 2i) + 1)

Γ(α(m− 2i) + 1 + γ)

(M−1∑
j=0

ajF
α
j (t)

)
(3.4)

= tγ
M−1∑
j=0

[⌊m/2⌋∑
i=0

(
m− i
i

)
Γ(α(m− 2i) + 1)

Γ(α(m− 2i) + 1 + γ)
aj

]
Fα
j (t)

= tγ
M−1∑
j=0

Pj(γ, α)F
α
j (t) = tγP̃m(γ, α)Φα(t), m = 0, 1, · · · ,M − 1,

in which

Pj(γ, α) =

⌊m/2⌋∑
i=0

(
m− i
i

)
Γ(α(m− 2i) + 1)

Γ(α(m− 2i) + 1 + γ)
aj ,

and P(γ, α) =

[
P̃m(γ, α)

]
,m = 0, 1, · · · ,M − 1. For example, for M = 3, α = γ = 1

2 , we have

P(
1

2
,
1

2
) =


2√
π

0 0

0
√
π
2 0

2
3
√
π

0 4
3
√
π

 .

3.2. Extra DO fractional derivative operator. In this subsection, we present another necessary tool to propose
an efficient numerical algorithm. For this purpose, we obtain an extra DO fractional derivative operator for FFFs in
the following form:

∫ b

a

τ(γ)Dγ
t (t

γΦα(t)) ≃ Θα(γ, t), (3.5)

where, Θα(γ, t) = [Θα
m(γ, t)]M×1, m = 0, 1, · · · ,M − 1.

Considering equation (2.3) and properties of Caputo derivative given in [26], the above integral can be computed
each element of Θα(γ, t) via an N-point Gauss-Legendre integration which is as follows



552 S. SABERMAHANI AND Y. ORDOKHANI

∫ b

a

τ(γ)Dγ
t (t

γFα
m(t))dγ =

∫ b

a

τ(γ)Dγ
t

(⌊m/2⌋∑
i=0

(
m− i
i

)
tα(m−2i)+γ

)
dγ

=

∫ b

a

τ(γ)

(⌊m/2⌋∑
i=0

(
m− i
i

)
Dγ

t t
α(m−2i)+γ

)
dγ

=

∫ b

a

τ(γ)

(⌊m/2⌋∑
i=0

(
m− i
i

)
Γ(α(m− 2i) + γ + 1)

Γ(α(m− 2i) + 1)
tα(m−2i)

)
dγ

=

⌊m/2⌋∑
i=0

tα(m−2i)

Γ(α(m− 2i) + 1)

(
m− i
i

)(∫ b

a

τ(γ)Γ(α(m− 2i) + γ + 1)dγ

)

≃
⌊m/2⌋∑
i=0

tα(m−2i)

Γ(α(m− 2i) + 1)

(
m− i
i

)[ N∑
ϑ=1

−b− a

2
ωϑτ(ηϑ)Γ(α(m− 2i) + ηϑ + 1)

]

=

⌊m/2⌋∑
i=0

( N∑
ϑ=1

−b− a

2

tα(m−2i)

Γ(α(m− 2i) + 1)

(
m− i
i

)
ωϑτ(ηϑ)Γ(α(m− 2i) + ηϑ + 1)

)
= Θα

m(γ, t), m = 0, 1, · · · ,M − 1,

where ωϑ and ηϑ are weights and nodes of Gauss-Legendre (for more details, see [10]).

4. Suggested technique

Here, we utilize the FFFs expansion and new achievements in the previous section for manufacturing an efficient
computational technique for solving the multi-dimensional DO FDEs in equations (1.1)-(1.3).

• DO FDE
In fact, assuming b > γ, for finding the solution of the expressed problem, we consider

Db
tu(t) ≃ UTΦα(t), (4.1)

then using equations (3.2) and (1.3), the following relation is obtained.

u(t) ≃ UTP(b, α, t)Φα(t) +

⌈b⌉−1∑
l=0

tl

l!
u0,l, (4.2)

and we get

Dγ
t u(t) ≃ UTP(b− γ, α, t)Φα(t) +

⌈b⌉−1∑
l=0

Dγ
t (t

l)

l!
u0,l (4.3)

= tb−γUTP(b− γ, α)Φα(t) +

⌈b⌉−1∑
l=0

Dγ
t (t

l)

l!
u0,l,

inserting Eq. (4.3) in equation (1.1) and utilizing Eq. (3.5), we derive
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∫ b

a

τ(γ)

(
tb−γUTP(b− γ, α)Φα(t) +

⌈b⌉−1∑
l=0

Dγ
t (t

l)

l!
u0,l

)
dγ + ω

(
UTP(b, α, t)Φα(t) +

⌈b⌉−1∑
l=0

tl

l!
u0,l

)

− G(t) ≃ UTP(b− γ, α)

∫ b

a

τ(γ)(tb−γΦα(t))dγ +

∫ b

a

(
τ(γ)

⌈b⌉−1∑
l=0

Dγ
t (t

l)

l!
u0,l

)
dγ

+ ω

(
UTP(b, α, t)Φα(t) +

⌈b⌉−1∑
l=0

tl

l!
u0,l

)
−G(t)

≃ UTP(b− γ, α)Θα(b− γ, t)− b− a

2

N∑
ϑ=1

ωϑτ(ηϑ)

(⌈b⌉−1∑
l=0

Dηϑ
t (tl)

l!
u0,l

)

+ ω

(
UTP(b, α, t)Φα(t) +

⌈b⌉−1∑
l=0

tl

l!
u0,l

)
−G(t)

= R(α, t), (4.4)

in which R(α, t) ≃ 0. In order to obtain an numerical solution of equations (1.1)-(1.2), we define 2-norm of
the residual functions in the following form

J =

∫ 1

0

R2(α, t)dt. (4.5)

The necessary conditions for the extreme J are given as

∂J

∂U
= 0. (4.6)

The above system can be solved using the ”FindRoot” package in Mathematica to derive the unknown
coefficients vector.

• DO time-fractional diffusion equations

We assume b = 1. ∂3U(x,t)
∂x2∂t can be expanded by FFFs as

∂3U(x, t)

∂x2∂t
≃ MΦT

α(x) U M̃Φα̃(t), (4.7)

where, MΦα(x) and M̃Φα̃(t) are the vectors of M × 1 and M̃ × 1-order, respectively. Next, in view of the
pseudo-operational matrix of fractional integration, we have

∂2U(x, t)

∂x2
≃ MΦT

α(x) U P(1, α, t) M̃Φα̃(t) + φ
′′
(x), (4.8)

and

∂U(x, t)

∂x
≃ MΦT

α(x) P
T (1, α, x)U P(1, α, t) M̃Φα̃(t) + φ

′
(x)− φ

′
(0) +

∂U(0, t)

∂x
, (4.9)

in which, ∂U(0,t)
∂x is unknown function.

By integrating the aforesaid function respect to x, the following relations are derived.

U(x, t) ≃ MΦT
α(x)P

T (2, α, x) U P(1, α, t) M̃Φα̃(t) + φ(x)− φ(0)− xφ
′
(0) + x

∂U(0, t)

∂x
+ ϕ0(t), (4.10)
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and

∂U(0, t)

∂x
≃ ϕ1(t)− ϕ0(t)−

(
ΛU P(1, α, t) M̃Φα̃(t) + φ(1)− φ(0)− φ

′
(0)

)
, (4.11)

where, Λ =
∫ 1

0 MΦT
α(x)P

T (1, α, x)dx. Also, we have

∂U(x, t)

∂t
≃ MΦT

α(x)P
T (2, α, x)U M̃Φα̃(t) + ϕ

′

0(t), (4.12)

and

∂γU(x, t)

∂tγ
≃ MΦT

α(x)P
T (2, α, x)UPT (1− γ, α, t) M̃Φα̃(t) + I1−γ

t (ϕ
′

0(t)). (4.13)

Regarding to the pervious section and with the help of the aforesaid equations, we obtain

∫ b

a

τ(γ)
∂γU

∂tγ
(x, t)dγ ≃

∫ b

a

τ(γ)Dγ
t

(
MΦT

α(x)P
T (2, α, x)UP(1, α, t)M̃Φα̃(t) + φ(x)− φ(0)− xφ

′
(0)

+ x
∂U(0, t)

∂x
+ ϕ0(t)

)
dγ

≃ MΦT
α(x)P

T (2, α, x)UP(1, α)

∫ b

a

τ(γ)Dγ
t (t M̃Φα̃(t))dγ + φ(x)− φ(0)− xφ

′
(0)

+ x

∫ b

a

τ(γ)Dγ
t

∂U(0, t)

∂x
dγ +

∫ b

a

τ(γ)Dγ
t ϕ0(t)dγ

≃ MΦT
α(x)P

T (2, α, x)UP(1, α)Θα(1, t) + φ(x)− φ(0)− xφ
′
(0)

+ x

[∫ b

a

τ(γ)Dγ
t ϕ1(t)dγ −

∫ b

a

τ(γ)Dγ
t ϕ0(t)dγ

−
(
ΛU

∫ b

a

τ(γ)Dγ
t P(1, α, t)M̃Φα̃(t)dγ + φ(1)− φ(0)− φ

′
(0)

)]
+

∫ b

a

τ(γ)Dγ
t ϕ0(t)dγ,

then, by implementing Gauss-Legendre formula, we get

∫ b

a

τ(γ)
∂γU

∂tγ
(x, t)dγ ≃ MΦT

α(x)P
T (2, α, x)UP(1, α)Θα(1, t) + φ(x)− φ(0)− xφ

′
(0)

+ x

[ N∑
ϑ=1

−b− a

2
ωϑτ(ηϑ)D

ηϑ
t ϕ1(t)−

N∑
ϑ=1

−b− a

2
ωϑτ(ηϑ)D

ηϑ
t ϕ0(t)

−
(
ΛUP(1, α)Θα(1, t)γ + φ(1)− φ(0)− φ

′
(0)

)]
+

N∑
ϑ=1

−b− a

2
ωϑτ(ηϑ)D

ηϑ
t ϕ0(t)

= Υ(α, x, t). (4.14)

Consequently, we substitute equations (4.7)-(4.14) into equation (1.3). Then, we derive

Υ(α, x, t)−
(

MΦT
α(x)UP(1, α, t)M̃Φα̃(t) + φ

′′
(x)

)
−G(t) = J∗(x, t). (4.15)
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The 2-norm of the residual functions for the above relation can be expressed as

J⋆(U) =
∫ 1

0

∫ 1

0

J∗2(x, t)dxdt. (4.16)

The necessary conditions for the extreme J⋆(U) are given as

∂J⋆(U)
∂U

= 0. (4.17)

Similar to the previous system, we solve this via ”FindRoot” package.

5. Error estimation

A function f ∈ L2[0, 1] can be expanded as

f(t) ≃
M−1∑
i=0

ciF
α
i (t) = CTΦα(t) := fM (t).

Then, we have error function Ê(t) as follows:

Ê(t) = |f(t)− fM (t)|, t ∈ [0, 1] (5.1)

Theorem 5.1. Suppose that Dmαf ∈ C(0, 1], m = 0, 1, · · · , M − 1 and Y α
M = {Fα

0 (t), Fα
1 (t), · · · , Fα

M−1(t)}. If
fM (x) is the best approximation to f(t) out of Y α

M , then the error bound of the approximate solution fM (t) by using
FFFs series would be obtained as follows:

∥f − fM∥2 ≤ Mα

Γ(Mα+ 1)
√
2Mα+ 1

, (5.2)

where Mα = supt∈[0,1] |DMαf(t)|.

Proof. We define

f̃(t) =
M−1∑
i=0

tmα

Γ(mα+ 1)
Dmαf(0+). (5.3)

From the generalized Taylors formula [22], we have

|f(t)− f̃(t)| ≤ tMα

Γ(Mα+ 1)
sup

t∈[0,1]

|DMαf(t)|. (5.4)

Since, f̃(t) is the best approximation of f out of Y α
M , f̃(t) ∈ Y α

M and from the above relation, we have

∥f − fM∥22 ≤ ∥f − f̃∥22 =

∫ 1

0

|f(t)− f̃(t)|2dx (5.5)

≤
∫ 1

0

t2Mα

Γ(Mα+ 1)2
M2

αdt

=
M2

α

Γ(Mα+ 1)2

∫ 1

0

t2Mαdt

=
M2

α

Γ(Mα+ 1)2(2Mα+ 1)
,
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the theorem is proved by taking the square roots.
�

Recent theorem proves convergence of approximations of FFFs to f(t).

Theorem 5.2. Let Dmα+γf ∈ C(0, 1], m = 0, 1, · · · , M − 1. If (Dγf)M (t) is the best approximation to Dγf(t)
from Y α

M , then

∥Dγf − (Dγf)M∥2 ≤ Mγ
α

Γ(Mα+ 1)
√
2Mα+ 1

, (5.6)

where Mγ
α = supt∈[0,1] |DMα+γf(t)|.

Proof. Due to the concept of the best approximation, ∀f̃ ∈ Y α
M , we have

∥Dγf − (Dγf)M∥2 ≤ ∥Dγf −Dγ f̃∥2,

considering the generalized Taylor formula (f̃), we get

|Dγf(t)−Dγ f̃(t)| =

∣∣∣∣∣f(t)−
M−1∑
i=0

tmα

Γ(mα+ 1)
Dmα (Dγf) (0+)

∣∣∣∣∣ ≤ Mγ
α

tMα

Γ(Mα+ 1)
,

where Mγ
α = supt∈[0,1] |DMα+γf(t)|. Taking L2[0, 1]-norm in both sides of the above inequality leads to

∥Dγf −Dγ f̃∥22 ≤ (Mγ
α)

2

Γ(Mα+ 1)2

∫ 1

0

t2Mαdt

=
(Mγ

α)
2

Γ(Mα+ 1)2(2Mα+ 1)
.

The theorem is proved by taking the square roots. �

Canuto et al. [10] defined the Sobolev norm of integer order s ≥ 0 in the domain (a, b)d in Rd, d = 2, 3 as

∥u∥Hs(a,b) =

( s∑
j=0

d∑
i=1

∥Dj
iu∥

2
L2(a,b)

) 1
2

, (5.7)

subject to Dj
i shows the jth derivative of u relative to the ith variable.

Theorem 5.3. Suppose that u ∈ Hs(0, 1), s ≥ 0. If

Pα,Mu =
M−1∑
m=0

umFα
m(t),

is the best approximation of the function u, so the following estimations are achieved.

∥u− Pα,Mu∥L2(0,1) ≤ c(α(M − 1))1−s

( s∑
j=min(s,(M−1)α+1)

d∑
i=1

∥Dj
iu∥

2
L2(0,1)

) 1
2

, (5.8)

and for 1 ≤ r ≤ s, we have

∥u− Pα,Mu∥Hr(0,1) ≤ c(α(M − 1))µ(r)−s

( s∑
j=min(s,(M−1)α+1)

d∑
i=1

∥Dj
iu∥

2
L2(0,1)

) 1
2

, (5.9)
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where

µ(r) =

{
0, r = 0,
2r − 1

2 , r > 0,

and c depends on s.

Proof. Concerning the results proposed by Canuto [10] and uniqueness of the best approximation [17], the following
relation holds:

∥u− Pα,Mu∥L2(0,1) = ∥u− PMαu∥L2(0,1) ≤ c(α(M − 1))1−s

( s∑
j=min(s,(M−1)α+1)

d∑
i=1

∥Dj
iu∥

2
L2(0,1)

) 1
2

,

and for 1 ≤ r ≤ s, we get

∥u− Pα,Mu∥Hr(0,1) = ∥u− PαMu∥Hr(0,1) ≤ c(α(M − 1))µ(r)−s

( s∑
j=min(s,(M−1)α+1)

d∑
i=1

∥Dj
iu∥

2
L2(0,1)

) 1
2

.

Hence, the mentioned results are established. �

6. Numerical experiments

Here, we include some numerical experiments for various choices of α, γ, and M to demonstrate the effectiveness of
the developed scheme. The computations associated with the examples were performed using Mathematica 12.3 on a
2.67GHz Corei5 personal computer with 4GB of RAM.

Example 6.1. Consider the following DO FDE [23]

∫ 1

0

Γ(72 − γ)

Γ( 72 )
Dγu(t)dγ =

t
3
2 (t− 1)

ln(t)
,

where u(0) = 0. The analytical solution of the example is u(t) = t
5
2 . The proposed technique is utilized to solve

this example for some values of M and α. Table 1 lists the maximum absolute errors of the suggested technique for
M = 3 and α = 1, 1

2 . A comparison is performed in this table between the reported results using the method based on
Legendre polynomials [23]. Also, in this table we assess the CPU time (in seconds) of the proposed method. Moreover,
Figure 1 shows the absolute error of the scheme for M = 5 and α = 1

2 . Besides, to demonstrate the stability of the
method, we make a small change in the initial condition (u(0) = δ). By implementing the present scheme for various
values of δ, we report the maximum errors in Table 2. From this table, it can be observed that by creating small
changes in the problem, the major error has not been created in the results.

The results demonstrate confirm the high accuracy of the present scheme and we can achieve an excellent approxi-
mation for the exact solutions by applying a limited number of basis functions.

Example 6.2. Consider the following DO FDE∫ 2

0

Γ(4− γ) sinh(γ)Dγu(t)dγ =
6t(t2 − cosh(2)− sinh(2)ln(t)

(ln(t))2 − 1
),

with the initial conditions

u(0) = u
′
(0) = 0.

The exact solution is u(t) = t3. The comparison of absolute errors of the suggested algorithm with fractional
Chelyshkov wavelet method (FChW) [24] are listed in Table 3. Also, the CPU time of the present method are
reported in this table. This table shows that we obtain more accurate results than the FChW.
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Table 1. Comparison of the L2 errors in Example 1.

Methods L2 errors CPU

[23]
m = 4 2.34× 10−4 −
m = 6 2.73× 10−5 −
m = 10 1.84× 10−6 −
m = 12 7.00× 10−7 −

Present method
M = 4, α = 1 6.18088× 10−5 10−4

M = 3, α = 1
2 1.01748× 10−15 10−3

0.0 0.2 0.4 0.6 0.8 1.0

0

5.×10
-16

1.×10
-15

1.5×10
-15

Figure 1. Absolute error for M = 3, α = 1
2 in Example 1.

Table 2. Maximum errors with M = 5, α = 1
2 and different values of δ in Example 1.

δ = 10−10 δ = 10−12 δ = 10−14

1.85866× 10−10 1.85651× 10−12 1.75415× 10−14

Table 3. Comparison of the absolute errors for several values of α,M for Example 2.

t FChW [24] FChW [24] Present method Present method
λ = 1, k = 2,M = 3 λ = 1, k = 2,M = 4 α = 1,M = 2 α = 1

2 ,M = 3

0.1 4.84× 10−9 4.59× 10−12 2.69× 10−16 5.99× 10−16

0.3 1.60× 10−8 9.57× 10−12 2.58× 10−15 2.19× 10−15

0.5 2.09× 10−8 1.45× 10−11 7.58× 10−15 1.08× 10−15

0.7 3.46× 10−8 4.39× 10−13 1.12× 10−14 1.16× 10−15

0.9 4.19× 10−8 5.94× 10−12 2.73× 10−14 1.59× 10−14

CPU − − 10−2 0.109

Example 6.3. Consider the following DO FDE which is described the motion of the DO fractional oscillator [31]

u
′′
(t) + σ(t) + w2u(t) = G0 sin(Ωt),
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0.2 0.4 0.6 0.8 1.0

2.×10
-7

4.×10
-7

6.×10
-7

8.×10
-7

1.×10
-6

Figure 2. The residual error of Example 3 for a = b = 2 and α = 1,M = 4.

∫ 1

0

aγDγσ(t)dγ = λ

∫ 1

0

bγDγu(t)dγ,

subject to

u(0) = u
′
(0) = 0.

Let Ω = 1.2w,w = 3, w∗ =
√
10, and G0 = λ = 1. The residual error of this problem for a = b = 2 and α = 1,M = 12

are displayed in Figure 2. This figure shows that the approximate solution has a good agreement with the exact
solution.

Example 6.4. Consider the following two dimensional DO FDE∫ 1

0

(Γ(
5

2
− γ)

∂γU

∂tγ
(x, t)dγ =

∂2U

∂x2
(x, t) +G(x, t),

where

G(x, t) =

√
t(x− 1)2

(
3
√
π(t− 1)(x− 1)2x2 − 8t(5x(3x− 2) + 1)ln(t)

)
ln(t)

,

and

U(x, 0) = 0, U(0, t) = U(1, t) = 0.

The analytical solution of the mentioned problem is U(x, t) = t
3
2x2(1− x)4. To solve this problem, we select some

values of M, M̃, α, and α̃ using the proposed technique. The absolute errors of this scheme with M = 5, M̃ = 3, α =
α̃ = 1, M = 5, M̃ = 2, α = 1, α̃ = 1

2 , and M = M̃ = 5, α = 1, α̃ = 1
4 , are displayed in Figure 3. In addition,

Table 4 compares the values of L∞-errors of the proposed scheme with Finite difference method [14], and Chebyshev
collocation method [20]. Moreover, CPU times of the proposed technique are reported in this table. Then, the quality
of the results achieved utilizing the proposed technique can be seen numerically and graphically from Table 4 and
Figure 3, respectively.

Example 6.5. Consider the following two dimensional DO FDE∫ 1

0

(Γ(
7

2
− γ)

∂γU

∂tγ
(x, t)dγ =

∂2U

∂x2
(x, t) +G(x, t),

where

G(x, t) =

t
3
2

(
15
√
π(t− 1)(x− 1)2x+ 16t(2− 3x)ln(t)

)
8ln(t)

,
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Figure 3. Absolute error for (a) M = 5, M̃ = 3, α = α̃ = 1, (b) M = 5, M̃ = 2, α = 1, α̃ = 1
2 , and

(c) M = M̃ = 5, α = 1, α̃ = 1
4 in Example 4.

Table 4. Comparison of L∞ errors for several values of α,M with some other methods for Example 4.

L∞ errors CPU

Finite difference method [14]
h = 0.5 8.40× 10−3 −
h = 0.25 2.45× 10−3 −
h = 0.125 6.36× 10−4 −
h = 0.0625 1.62× 10−4 −
Chebyshev collocation method [20]
n = m = 5 1.21× 10−3 −
n = m = 7 1.06× 10−5 −
n = m = 9 4.47× 10−6 −
n = m = 11 1.69× 10−6 −

Present method

M = 5, M̃ = 2, α = 1, α̃ = 1
2 1.50× 10−15 0.22

M = M̃ = 5, α = 1, α̃ = 1
4 8.88× 10−16 0.37
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Table 5. Comparison of the absolute errors for M = 2, M̃ = 4, α = 1, and α̃ = 1
2 with Chelyshkov

wavelet method [24] for Example 5.

(x, t) Chelyshkov wavelet method [24] Chelyshkov wavelet method [24] Present method

k = k
′
= 1,M = M

′
= 4, λ = λ

′
= 1

2 k = k
′
= 1,M = 3,M

′
= 4, λ = λ

′
= 1

2 M = 2, M̃ = 4, α = 1, and α̃ = 1
2

(0.2, 0.2) 1.71× 10−15 6.51× 10−18 3.90× 10−18

(0.4, 0.4) 1.04× 10−17 2.78× 10−17 3.47× 10−18

(0.6, 0.6) 3.33× 10−16 1.91× 10−16 5.55× 10−17

(0.8, 0.8) 2.15× 10−16 3.54× 10−16 5.55× 10−17

CPU − − 0.64

Figure 4. Absolute error of the present method for M = 2, M̃ = 4, α = 1, and α̃ = 1
2 , in Example 5.

and

U(x, 0) = 0, U(0, t) = U(1, t) = 0.

The exact solution of this problem is U(x, t) = t
5
2x(1− x)2. To solve this problem, we select values of M = 2, M̃ =

4, α = 1, and α̃ = 1
2 using the technique. The absolute errors of this method (togethed CPU time of the method) are

compared to the values of absolute errors of our method with Chelyshkov wavelet method [24] in Table 5. Figure 4
displays the absolute error obtained by the suggested scheme. Besides, the absolute error of Chebyschev collocation
method in n = m = 10 is plotted in [20]. From this figure and Figure 4, we see that we can obtain a reasonable
approximation with the analytical solution of this problem.

Example 6.6. Consider the following two dimensional DO FDE∫ 1

0

(Γ(3− γ)
∂γU

∂tγ
(x, t)dγ =

∂2U

∂x2
(x, t) +G(x, t),

where

G(x, t) =
2t(t− 1)(1− x) cos(x)

ln(t)
− 2t2 sin(x) + t2(1− x) cos(x),

and

U(x, 0) = 0, U(0, t) = t2,U(1, t) = 0.

The exact solution of this problem is U(x, t) = t2(1 − x) cos(x). We solve this problem using the present scheme.

Figure 5 shows the approximate solution and the plot of the absolute error obtained with M = 2, M̃ = 4, α = 1, and
α̃ = 1. This figure shows that we obtained a numerical solution that has good agreement with the analytical solution.
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Figure 5. (a) The approximate solution and (b) the absolute error of the present method for M =

2, M̃ = 7, α = 1, and α̃ = 1, in Example 6.

7. Conclusion

In this manuscript, the fractional-order Fibonacci functions and their features are implemented to derive a numerical
solution of DO fractional differential equations and DO time-fractional diffusion equations. An extra DO fractional
derivative operator and pseudo-operational matrix of fractional integration for FFFs are proposed. The algorithm
converts the considered problem to a system of algebraic equations in order to achieve the unknown coefficients
optimally. Moreover, a set of numerical tests has been proposed. The numerical results are compared with analytical
solutions and some previous techniques. The examples show the effectiveness and efficiency of the method.
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