- [1] L. Adibmanesha, and J. Rashidinia, Sinc and B-Spline scaling functions for time-fractional convection-diffusion equations, J. King Saud Univ. Sci., 33 (2021), 101343.
- [2] M. R. Azizi and A. Khani, Sinc operational matrix method for solving the Bagley-Torvik equation, Comput. Methods Differ. Equ., 5 (2017), 56-66.
- [3] P. J. Caudrey, I. C. Eilbeck, and J. D. Gibbon, The Sine-Gordon as a model classical field theory, Il Nuovo Cimento B, 25 (1975) 497-512.
- [4] M. S. H. Chowdhury and I. Hashim, Application of homotopy-perturbation method to Klein-Gordon and sine- Gordon equations, Chaos Solit. Fractals., 39 (2009), 1928-1935.
- [5] M. Dehghan, M. Abbaszadeh, and A. Mohebbi, An implicit RBF meshless approach for solving the time fractional nonlinear sine-Gordon and Klein-Gordon equations, Eng. Anal. Bound. Elem., 50 (2015), 412-434.
- [6] R. K. Dodd, H. C. Morris, J. Eilbeck, and J. Gibbon, Soliton and nonlinear wave equations, London and New York: Academic Press, 1982.
- [7] W. Greiner, Relativistic quantum mechanics, springer, Berlin, 2000.
- [8] G. Hariharan, Haar wavelet method for solving the Klein-Gordon and the Sine-Gordon equations, Int. J. Nonlinear Sci., 11 (2011), 180-189.
- [9] R. Hilfer, Applications of Fractional Calculus in Physics, World Scientific, Singapore, 2000.
- [10] M. M. Khader and M. H. Adel, Numerical solutions of fractional wave equations using an efficient class of FDM based on the Hermite formula, Adv. Differ. Equ., 2016 (2016), 1-10.
- [11] N. Laskin and G. Zaslavsky, Nonlinear fractional dynamics on a lattice with long range interaction, Physica A, 368 (2006), 38-54.
- [12] M. Lotfi, and A. Alipanah, Legendre spectral element method for solving sine-Gordon equation, Adv. Differ. Equ., 2019 (2019), 1-15.
- [13] J. Lund and K. L. Bowers, Sinc methods for quadrature and differential equations, Society for Industrial and Applied Mathematics, 1992.
- [14] F. Mainardi, The fundamental solutions for the fractional diffusion-wave equation, Appl. Math. Lett., 9 (1996), 23-8.
- [15] K. Maleknejad, J. Rashidinia, and T. Eftekhari, Existence, uniqueness, and numerical solutions for two- dimensional nonlinear fractional Volterra and Fredholm integral equations in a Banach space, Comput. Appl. Math., 39 (2020), 1-22.
- [16] K. Maleknejad, J. Rashidinia, and T. Eftekhari, Operational matrices based on hybrid functions for solving general nonlinear two-dimensional fractional integro-differential equations, Comput. Appl. Math., 39 (2020), 1-34.
- [17] A. Mohebbi and M. Dehghan, High-order solution of one-dimensional sine-Gordon equation using compact finite difference and DIRKN methods, Math. Comput. Model., 51 (2010), 537-549.
- [18] N. Moshtaghi and A. Saadatmandi, Polynomial-Sinc collocation method combined with the Legendre-Gauss quad- rature rule for numerical solution of distributed order fractional differential equations, Rev. Real Acad. Cienc. Exactas Fis. Nat. Serie A: Mat., 115 (2021), 1-23.
- [19] N. Moshtaghi and A. Saadatmandi, Numerical solution of time fractional cable equation via the Sinc-bernoulli collocation method, J. Appl. Comput. Mech., 7 (2021), 1916-1924.
- [20] M. Nabati, S. Taherifar, and M. Jalalvand, Sinc-Galerkin approach for thermal analysis of moving porous fin subject to nanoliquid flow with different shaped nanoparticles, Math. Sci., (2021), 1-16.
- [21] M. Nabati, M. Jalalvand, and S. Taherifar, Sinc collocation approach through thermal analysis of porous fin with magnetic field, J. Therm. Anal. Calorim., 144 (2021), 2145-2158.
- [22] A. M. Nagy, Numerical solution of time fractional nonlinear Klein-Gordon equation using Sinc-Chebyshev collo- cation method, Appl. Math. Comput., 310 (2017), 139-148.
- [23] O. Nikan, Z. Avazzadeh, and J. T. Machado, Numerical investigation of fractional nonlinear sine-Gordon and Klein-Gordon models arising in relativistic quantum mechanics, Eng. Anal. Bound. Elem., 120 (2020), 223-237.
- [24] N. Noghrei, A. Kerayechian, and A. R. Soheili, Gaussian radial basis function and quadrature Sinc method for two-dimensional space-fractional diffusion equations, Math. Sci., (2021), 1-10.
- [25] K. Parand, M. Dehghan, and A. Pirkhedri, The Sinc-collocation method for solving the Thomas-Fermi equation, J. Comput. Appl. Math., 237 (2013), 244-252 .
- [26] W. Qiu, D. Xu, and J. Guo, Numerical solution of the fourth-order partial integro-differential equation with multi-term kernels by the Sinc-collocation method based on the double exponential transformation, Appl. Math. Comput., 392 (2021), 125693.
- [27] A. Saadatmandi, A. Khani, and M. R. Azizi, Numerical calculation of fractional derivatives for the sinc functions via Legendre polynomials, Interdiscip. Math. Sci., 5 (2020), 71-86.
- [28] A. Saadatmandi, M. Dehghan, and M. R. Azizi, The Sinc-Legendre collocation method for a class of fractional convection-diffusion equations with variable coefficients, Commun. Nonlinear Sci. Numer. Simul., 17 (2012), 4125- 4136.
- [29] R. Sassaman and A. Biswas, 1-soliton solution of the perturbed Klein-Gordon equation, Phys. Express., 1 (2011), 9-14.
- [30] A. Secer, S. Alkan, M. A. Akinlar, and M. Bayram, Sinc-Galerkin method for approximate solutions of fractional order boundary value problems, Bound. Value Probl., 2013 (2013), 1-14.
- [31] I. M. Sokolov, J. Klafter, and A. Blumen, Fractional kinetics, Phys. Today, 55 (2002), 48-54.
- [32] F. Stenger, Handbook of Sinc Numerical Methods, CRC Press, New York, NY, USA, 2011.
- [33] F. Stenger, Handbook of Sinc numerical methods. CRC Press, 2016.
- [34] H. G. Sun, W. Chen, C. Li, and Y. Q. Chen, Fractional differential models for anomalous diffusion, Phys. A: Stat. Mech. Appl., 389 (2010), 2719-2724.
- [35] M. Yaseen, M. Abbas, and B. Ahmad, Numerical simulation of the nonlinear generalized time-fractional Klein- Gordon equation using cubic trigonometric B-spline functions, Math. Methods Appl. Sci., 44 (2021), 901-916.
- [36] F. Yin, T. Tian, J. Song, and M. Zhu, Spectral methods using Legendre wavelets for nonlinear Klein Sine-Gordon equations, J. Comput. Appl. Math., 275 (2015), 321-334.
|