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Abstract
In this paper, a pseudospectral method is proposed for solving the nonlinear time-fractional Klein-Gordon and

sine-Gordon equations. The method is based on the Sinc operational matrices. A finite difference scheme is
used to discretize the Caputo time-fractional derivative, while the spatial derivatives are approximated by the

Sinc method. The convergence of the full discretization of the problem is studied. Some numerical examples are

presented to confirm the accuracy and efficiency of the proposed method. The numerical results are compared
with the analytical solution and the reported results in the literature.
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1. Introduction

Differential equations of fractional order are the generalization of the classical integer-order differential equations.
Fractional calculus is an important tool for modeling complex problems and has attracted the interest of the scientist
in various areas [9, 14, 31, 34]. The key advantage of the fractional models over the classical models is their nonlocal
properties. Here, we consider the following time-fractional nonlinear equation:

∂αu(x, t)

∂tα
+ λ1u(x, t) + λ2g (u(x, t)) =

∂2u(x, t)

∂x2
+ f(x, t), a ≤ x ≤ b, t ≥ 0, (1.1)

subject to initial conditions

u(x, 0) = φ0(x),
∂u(x, 0)

∂t
= φ1(x), a ≤ x ≤ b, (1.2)

and the boundary conditions

u(a, t) = ψ1(t), u(b, t) = ψ2(t), t ≥ 0, (1.3)

where 1 < α ≤ 2, g, f are continuous functions and λ1, λ2 are some positive constants. The ∂αu(x,t)
∂tα is the Caputo

fractional derivative of order α with respect t expressed by

∂αu(x, t)

∂tα
=

1

Γ(2− α)

∫ t

0

(t− s)1−α ∂
2u(x, t)

∂s2
ds, (1.4)

where Γ(.) is the Gamma function. When the nonlinear term is g(u) = uβ , (1.1) corresponds to the Klein-Gordon
equation of fractional order with quadratic or cubic nonlinearity. The Klein-Gordon equation arises in many branches
of sciences such as optics, fluid dynamics, DNA dynamics, quantum mechanics, solid mechanics and so on [3, 11, 29].
The (1.1) becomes the time fractional sine-Gordon equation when g(u) = sin(u). The sine-Gordon equation arises
in the various areas of physics such as classical lattice dynamics in the continuum media and the electromagnetic
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wave propagation [6, 7, 36]. Several numerical methods have been proposed to obtain the approximate solution of
fractional Klein-Gordon and sine-Gordon equations in the literature. For example, we can mention to the shifted
Legendre operational matrices [36], Haar wavelets method [8], the implicit radial basis function meshless method
[5], the collocation method based on the combination of the Sinc function and the second kind shifted Chebyshev
polynomials [22], Legendre spectral element method [12], local radial basis functions finite difference method [23],
compact finite difference and DIRKN methods [17], homotopy-perturbation method [4] and so on. In recent years,
the use of the Sinc methods in solving various type of differential equations have attracted the attention of many
scientists and researchers [1, 2, 15, 16, 18–21, 24, 26, 27]. These methods have been used in solving many scientific
and engineering problems such as fractional convection-diffusion equation [28], Thomas-Fermi equation [25], fractional
order boundary value problems [30], and so on. The main objective of this work is to introduce a numerical method
based on the Sinc approximation in the framework of the pseudospectral method for the nonlinear time-fractional
Klein-Gordon and sine-Gordon equations. A finite difference scheme is used to discretize the Caputo time-fractional
derivative, while the spatial derivatives are approximated by the Sinc method. In addition, the convergence of the full
discretization of the problem is studied. The main advantages of the proposed method are as follows; first, it is easy
to implement and program; second, it eliminates the treatment of the boundary conditions, using the basis functions
which satisfy the boundary conditions exactly; thirdly, using the Sinc operational matrices we transform the main
nonlinear problem into a linear system of algebraic equations; fourthly, it does not need any linearization process for
nonlinear time-dependent problems. Some numerical examples are provided to confirm the applicability and accuracy
of the proposed method. The numerical results are compared with the analytical solution and the reported results in
the literature. The numerical results and comparisons exhibit that the proposed method is powerful and accurate.

2. Preliminaries

In this section, a review of the Sinc function and notation is presented. The reader can refer to [13, 32] for more
details.

For any −∞ < x <∞, the Sinc function is given by,

Sinc(x) =

{
sin(πx)
πx , x 6= 0,

1, x = 0,
(2.1)

and the translated Sinc functions are given as follows for any h > 0

S(j, h)(x) = Sinc

(
x− jh
h

)
, j = 0,±1,±2, ... (2.2)

Lemma 2.1. [13] Let S(j, h) is defined as (2.2), then

δ
(0)
jk = S(j, h)(kh) =

{
1, j = k,
0, j 6= k,

(2.3)

and

δ
(1)
jk = h

d

dx
(S(j, h)(x)) (kh) =

{
0, j = k,
(−1)k−j

k−j , j 6= k,
(2.4)

and

δ
(2)
jk = h2 d

2

dx2
(S(j, h)(x)) (kh) =

{
−π2

3 , j = k,
−2(−1)k−j

(k−j)2 , j 6= k.
(2.5)

Theorem 2.2. [33] Let f be defined on R, and let Fourier transform f̃ , be such that for some positive constant d,

|f̃(y)| = O
(
e−d|y|

)
, y → ±∞. (2.6)
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Then, as h→ 0,

‖f(x)−
∞∑

j=−∞
f(jh)S(j, h)‖∞ = O

(
e−

πd
h

)
. (2.7)

Definition 2.3. Let Ds denote the infinite strip domain of width 2d, d > 0 and Np(f,Ds) for 1 ≤ p < ∞ is defined
as follows:

Np(f,Ds) ≡ limy→d−

{(∫ ∞
−∞
|f(t+ iy)|pdt

)1/p

+

(∫ ∞
−∞
|f(t− iy)|pdt

)1/p
}
.

Then consider Bp(Ds) as the set of analytic functions such that∫ d

−d
|f(t+ iy)|dy = O (|t|a) , t→ ±∞, 0 ≤ a < 1,

and

Np(f,Ds) <∞.

The exponential convergence of the truncated Sinc expansion is presented in the following theorem.

Theorem 2.4. [13] Assume f ∈ Bp(Ds) (p = 1 or 2) and that there are positive constant α, β, and C such that

|f(x)| ≤ C
{
exp(α|x|), x ∈ (−∞, 0),
exp(−β|x|), x ∈ [0,∞).

(2.8)

Then for N = [|αβM + 1|] and h =
√
πd/(αM) we have

‖f −
N∑

j=−M
f(jh)S(j, h)‖∞ ≤ K

√
Mexp(−

√
πdαM), (2.9)

where K is a constant depending on f, p and d.

3. The numerical scheme

In this section, a finite difference scheme is combined with the Sinc method to discretize the nonlinear time-fractional
Klein-Gordon and sine-Gordon equations (1.1)-(1.3). Before utilizing the Sinc approximation on the nonhomogeneous
problems, we convert the nonhomogeneous boundary conditions to a homogeneous ones, since the Sinc functions satisfy
the homogeneous conditions limx→±∞ Sinc(x) = 0. In fact, it eliminates the treatment of the boundary conditions,
using the basis functions which satisfy the boundary conditions exactly. So, in order to utilize the Sinc method, we
homogenize the boundary condition of (1.1)-(1.3). Let H(x, t) = b−x

b−aψ1(t) + x−a
b−aψ2(t) v(x, t) = u(x, t)−H(x, t) then

(1.1)-(1.3) is convert to the following problem
∂αv(x,t)
∂tα + λ1v(x, t) + λ2g (v(x, t) +H(x, t)) = ∂2v(x,t)

∂x2 + h(x, t), a ≤ x ≤ b, t ≥ 0,

v(x, 0) = Φ0(x), ∂v(x,0)
∂t = Φ1(x), a ≤ x ≤ b,

v(a, t) = 0, v(b, t) = 0, t ≥ 0,

(3.1)

where h(x, t) = −∂
αH(x,t)
∂tα − λ1H(x, t) + f(x, t),Φ0(x) = φ0(x)−H(x, 0) and Φ1(x) = φ1(x)− ∂H(x,0)

∂t . Now, since the
Sinc function is defined on the (−∞,∞), we need to use a change of variable to transform the domain of the problem
to the whole real line. For this purpose, we use the following map

x = ψ(ζ) =
a+ beζ

1 + eζ
, (3.2)
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which transforms the problem (3.1) to a new problem on the whole real line as follows:
∂αv(ψ(ζ),t)

∂tα + λ1v(ψ(ζ), t) + λ2g(v(ψ(ζ), t) +H(ψ(ζ), t)) =
∂2v(ψ(ζ),t)

∂x2 + h(ψ(ζ), t),−∞ ≤ ζ ≤ ∞, t ≥ 0,

v(ψ(ζ), 0) = Φ0(ψ(ζ)), ∂v(ψ(ζ),0)
∂t = Φ1(ψ(ζ)),−∞ ≤ ζ ≤ ∞,

limζ→±∞v(ψ(ζ), t) = 0.

(3.3)

By placing U(ζ, t) = v(ψ(ζ), t) and using the chain rule of differentiation we have
∂αU(ζ,t)
∂tα + λ1U(ζ, t) + λ2g (U(ζ, t) +H(ζ, t)) =(
1

ψ′(ζ)

)2
∂2U(ζ,t)
∂ζ2 − ψ

′′
(ζ)

(ψ′(ζ))3
∂U(ζ,t)
∂ζ + h(ζ, t),−∞ ≤ ζ ≤ ∞, t ≥ 0,

U(ζ, 0) = Φ0(ψ(ζ)), ∂U(ζ,0)
∂t = Φ1(ψ(ζ)),−∞ ≤ ζ ≤ ∞,

limζ→±∞U(ζ, t) = 0,

(3.4)

where H(ζ, t) = H(ψ(ζ), t) and h(ζ, t) = h(ψ(ζ), t).

3.1. Temporal discretization. In order to discretize the time-fractional derivative in (3.4), we define:

δt = T
M , tn = nδt, n = 0, 1, 2, ...,M,

Un(ζ) = U(ζ, tn), Unζ (ζ) = ∂U(ζ,tn)
∂ζ , Unζζ(ζ) = ∂2U(ζ,tn)

∂ζ2 ,

bj = (j + 1)2−α − j2−α, j = 0, 1, 2, ...,

which could be easily shown that bj , j = 0, 1, 2, ... have the following properties

b0 = 1,
b0 > b1 > b2 > ... > bn, bn → 0asj →∞,∑n−1
j=0 (bj − bj+1) + bn = 1.

(3.5)

Lemma 3.1. [10, 35] Let 1 < α < 2 and α0 = δt−α

Γ[3−α] . Then

∂αU(ζ, tn+1)

∂tα
= α0

n∑
j=0

bj
(
Un−j+1(ζ)− 2Un−j(ζ) + Un−j−1(ζ)

)
+ rn+1

δt . (3.6)

The truncation error bound is given by

|rn+1
δt | ≤ Cδt

3−α, (3.7)

where C is a constant.

Using Lemma 3.1, the main equation of (3.4) can be discretized as

α0

∑n
j=0 bj

(
Un−j+1 − 2Un−j + Un−j−1

)
+ λ1(U

n+1+Un

2 )

+λ2g(Un +Hn) =
(

1
ψ′

)2

Un+1
ζζ − ψ

′′

(ψ′)3U
n+1
ζ + hn+1 +O(δt3−α).

(3.8)

To replace the term U−1 which appears in the above summation, we can use the initial condition Ut(ζ, 0) = Φ1(ψ(ζ))

to obtain U0
t = U1−U−1

2δt which gives U−1 = U1 − 2δtΦ1(ψ(ζ)). Therefor the summation in the left hand side of (3.8)
can be rewritten as∑n

j=0 bj
(
Un−j+1 − 2Un−j + Un−j−1

)
= Un+1 − Un−∑n−1

j=0 (bj − bj+1)
(
Un−j − Un−j−1

)
+ bnU

1 − 2bnδtΦ1(ψ(ζ))− bnU0.
(3.9)

Finally, the time-discretized form of the main equation of the problem (3.4) with the given initial conditions will be
as the following iterative scheme(

α0 + λ1

2

)
Un+1 −

(
1
ψ′

)2

Un+1
ζζ + ψ

′′

(ψ′)3U
n+1
ζ =(

α0 − λ1

2

)
Un + α0

∑n−1
j=0 (bj − bj+1)

(
Un−j − Un−j−1

)
− α0bnU

1

+2α0bnδtΦ1 (ψ(ζ)) + α0bnU
0 − λ2g(Un +Hn) + hn+1 +O(δt3−α).

(3.10)
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The equation (3.10) can be rewritten in a operator form as follows

LUn+1(ζ) = Fn(ζ) +O(δt3−α), (3.11)

where

LUn+1(ζ) =

(
α0 +

λ1

2

)
Un+1 −

(
1

ψ′

)2

Un+1
ζζ +

ψ
′′

(ψ′)3
Un+1
ζ (3.12)

and

Fn(ζ) =
(
α0 − λ1

2

)
Un + α0

∑n−1
j=0 (bj − bj+1)

(
Un−j − Un−j−1

)
−α0bnU

1 + 2α0bnδtΦ1(ψ(ζ)) + α0bnU
0 − λ2g (Un +Hn) + hn+1.

(3.13)

3.2. Full discretization. The Sinc method is applied to the discretization of the problem (3.4) in space direction.
We approximate the solution Un+1(ζ) of (3.10) as follows

Un+1
N (ζ) =

N∑
i=−N

cn+1
i Sinc

(
ζ − ih
h

)
=

N∑
i=−N

cn+1
i S(i, h)(ζ), (3.14)

which satisfies the homogenous boundary condition given in (3.4). In (3.14), h is a fixed step size and cn+1
i are

unknown coefficients that must be determined. If we evaluate (3.14) at the grid point ζj = jh, j = 0,±1,±2, ...,±N ,
then we get

Un+1
N (ζj) =

N∑
i=−N

cn+1
i S(i, h)(ζj), j = 0,±1,±2, ...,±N, (3.15)

and in the matrix notation

Un+1
N = ACn+1, (3.16)

where Un+1
N = [Un+1

N (ζ−N ), ..., Un+1
N (ζN )]T , Cn+1 = [cn+1

−N , ..., c
n+1
N ]T and the elements of matrix A are Aji =

S(i, h)(ζj). Let L be the defined linear operator in (3.12), then we have

LUn+1
N (ζ) =

N∑
i=−N

cn+1
i LS(i, h)(ζ). (3.17)

We evaluate (3.17) at the grid point ζj = jh, j = 0,±1,±2, ...,±N , then we get the following matrix system

LUn+1
N = ALC

n+1, (3.18)

where Un+1
N and Cn+1 are the same as before and the matrix AL has entries LS(i, h)(ζj), Which can be obtained

using Lemma 2.1 as follows

LS(i, h)(ζj) =

(
α0 +

λ1

2

)
δ

(0)
ij −

(
1

hψ′(ζj)

)2

δ
(2)
ij +

ψ
′′

h(ψ′)3
δ

(1)
ij . (3.19)

By substituting Cn+1 form (3.16) into (3.18) we get

LUn+1
N = ALA

−1Un+1
N . (3.20)
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Therefore, we obtained the operational matrix L = ALA
−1 corresponding to the linear operator L. where A and AL

are the following matrices:

A =



S(−N,h)(ζ−N ) S(−N + 1, h)(ζ−N ) · · · S(N,h)(ζ−N )

S(−N,h)(ζ−N+1) S(−N + 1, h)(ζ−N+1) · · · S(N,h)(ζ−N+1)

. . .
. . .

S(−N,h)(ζN ) S(−N + 1, h)(ζN ) · · · S(N,h)(ζN )


,

and

AL =



LS(−N,h)(ζ−N ) LS(−N + 1, h)(ζ−N ) · · · LS(N,h)(ζ−N )

LS(−N,h)(ζ−N+1) LS(−N + 1, h)(ζ−N+1) · · · LS(N,h)(ζ−N+1)

. . .
. . .

LS(−N,h)(ζN ) LS(−N + 1, h)(ζN ) · · · LS(N,h)(ζN )


.

Now using the operational matrix L and the zero vector as the initial guess U0
N , an approximate solution of the (3.11)

at the points ζj = jh, j = 0,±1,±2, ...,±N can be obtained by solving the following linear system at each iteration

LUn+1
N = F n, (3.21)

where F n = [Fn(ζ−N ), ..., Fn(ζN )]T . The function Fn is defined in the equation (3.13), which depends on the values
of U0

N , ...,U
n
N in the previous iterations.

3.3. Convergence analysis. In the following theorem, we investigate the convergence of the full discretization iter-
ative scheme (3.21).

Theorem 3.2. Suppose that the conditions of the Theorem 2.4 are satisfied and g(u) satisfies the Lipschitz condition

|g(u)− g(v)| ≤ L|u− v|, ∀u, v, (3.22)

where L is the Lipschitz constant. Then the proposed scheme (3.21) is convergent to the solution of problem (3.4).

Proof. Let ‖u‖∞ = max−N≤i≤N |ui| for any vector u = [u−N , ..., uN ]. From the Lipschitz condition for g, it can be
seen that

‖g(u)− g(v)‖∞ ≤ L‖u− v‖∞, ∀u, v. (3.23)

Let Ûn+1
N (ζ) =

∑N
i=−N ĉ

n+1
i S(i, h)(ζ) be the Sinc expansion of the exact solution of the problem (3.4) at a specific

time tn+1. From the triangle inequality we have

‖Un+1 −Un+1
N ‖∞ ≤ ‖Un+1 − Û

n+1

N ‖∞ + ‖Û
n+1

N −Un+1
N ‖∞. (3.24)

Let En+1 = Û
n+1

N −Un+1
N , then from (3.10), (3.21) and E0 = 0 we have

LEn+1 =
(
α0 − λ1

2

)
En + α0

∑n−1
j=0 (bj − bj+1)

(
En−j −En−j−1

)
−α0bnE

1 − λ2

(
g
(
Û
n

N + Hn
N

)
− g (Un

N + Hn
N )
)

+O(δt3−α),
(3.25)

where Hn
N = [H(ζ−N , tn), ...,H(ζN , tn)]T . We use the mathematical induction to prove the result. For n = 1 we have

LE1 = −α0b0E
1 +O(δt3−α),

which easily gives the following result

‖E1‖∞ ≤ C1δt
3−α,
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where C1 is a constant. Now let ‖Ei‖∞ ≤ Ciδt
3−α, i = 1, 2, 3, ..., n. Then, from triangle inequality, the Lipschitz

condition for g and (3.25) we have

‖En+1‖∞ ≤ ‖L−1‖
[(
α0 − λ1

2

)
‖En‖∞

+α0

∑n−1
j=0 (bj − bj+1)‖En−j −En−j−1‖∞

+α0bn‖E1‖∞ + λ2L‖En‖∞ +O(δt3−α)
]

≤ ‖L−1‖
[(
α0 − λ1

2

)
+ α0

∑n−1
j=0 (bj − bj+1) + α0bn + λ2L

]
Cn+1δt

3−α.

(3.26)

Then from (3.5) we have

‖En+1‖∞ ≤ ‖L−1‖
[(

2α0 −
λ1

2

)
+ λ2L

]
Cn+1δt

3−α. (3.27)

From Theorem 2.4, (3.24), and (3.27), we conclude that

‖Un+1 −Un+1
N ‖∞ ≤ K

√
Nexp

(
−
√
πdαN

)
+ Cδt3−α, (3.28)

where K and C are some positive constant. The first part of the obtained error estimate vanishes as N → ∞ and is
the Sinc approximation error. The second part of the obtained error estimate vanishes as δt → 0 and is the error of
temporal discretization. The proof is complete. �

4. Numerical experiments

In this section, we present some numerical examples to show the efficiency and accuracy of the proposed method.
The results obtained by the proposed method are compared with the analytical solution and the reported results in
the literature.

Example 4.1. We consider the following nonlinear fractional sine-Gordon equation as the first example
∂αu(x,t)
∂tα = ∂2u(x,t)

∂x2 − sin(u(x, t)) + f(x, t), 0 ≤ x, t ≤ 1,

u(x, 0) = 0, ∂u(x,0)
∂t = 0, 0 ≤ x ≤ 1,

u(0, t) = 0, u(1, t) = t2sin1,

(4.1)

where f(x, t) =
(

2t2−α

Γ(2−α) + t2
)
sin(x)+sin

(
t2sin(x)

)
. The exact solution to the problem is u(x, t) = t2sin(x). Table 1

shows the maximum absolute errors and CPU time of the obtained approximate solutions for example 4.1 with
2N+1 = 61 grid points and various values of δt = 0.01, 0.005, 0.001, 0.0007 and α = 1.15, 1.5, 1.75, 1.85. Table 2 shows
the maximum absolute errors and CPU time of the obtained approximate solutions for example 4.1 with δt = 0.001
and various values of grid points 2N + 1 and fractional derivative order α. We observed that the absolute errors are
decreased by increasing N or by decreasing δt. Figure 1 presents the graph of the absolute errors of the approximate
solutions for example 4.1 with δt = 0.0007, N = 30 and various values of α. For comparison, the best results reported
in [5] and [35] have 10−4 maximum absolute errors.

Table 1. Maximum absolute error for example 4.1 with N = 30 and various values of δt and α.

α = 1.15 α = 1.5 α = 1.75 α = 1.85 CPU time(s)

δt = 0.01 1.44021×10−4 1.31085× 10−4 1.46578× 10−4 1.6068× 10−4 11.37

δt = 0.005 7.19266× 10−5 6.41681× 10−5 6.91503× 10−5 7.7651× 10−5 24.17

δt = 0.001 1.38586× 10−5 1.24987× 10−5 1.27514× 10−5 1.36377× 10−5 366.81

δt = 0.0007 9.51033× 10−6 8.75809× 10−6 8.92473× 10−6 9.19039× 10−6 888.46

Example 4.2. Let us consider the following nonlinear fractional Klein-Gordon equation with quadratic nonlinearity
∂αu(x,t)
∂tα + (u(x, t))2 = ∂2u(x,t)

∂x2 + f(x, t), 0 ≤ x, t ≤ 1,

u(x, 0) = 0, ∂u(x,0)
∂t = 0, 0 ≤ x ≤ 1,

u(0, t) = t
3
2 , u(1, t) = 0,

(4.2)
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Table 2. Maximum absolute error for example 4.1 with δt = 0.001 and various values of N and α.

α = 1.15 α = 1.5 α = 1.75 α = 1.85 CPU time(s)

N = 10 1.74645× 10−4 1.74638× 10−4 1.74626× 10−4 1.74618× 10−4 131.23

N = 20 6.87852× 10−5 6.20042× 10−5 6.16707× 10−5 6.07852× 10−5 253.53

N = 30 1.38586× 10−5 1.24987× 10−5 1.27514× 10−5 1.36377× 10−5 366.81

Figure 1. Graph of absolute error for example 4.1 with δt = 0.0007, N = 30 and various values of α.

where f(x, t) =
Γ( 5

2 )

Γ( 5
2−α)

(1−x)
5
2 t

3
2−α− 15

4 (1−x)
1
2 t

3
2 +(1−x)5t3. The exact solution to the problem is u(x, t) = (1−x)

5
2 t

3
2 .

Tables 3 and 4 show the maximum absolute errors and CPU time of the obtained approximate solutions for Example
4.2 with various values of N, δt and α. For comparison, the best results reported in [22] and [35] are given in Table 3.
It is obvious that the proposed method gives us more accurate approximations by increasing the number of grid points
or by decreasing the time step. Figure 2 presents the graph of the absolute errors of the approximate solutions for
Example 4.2 with δt = 0.0005, N = 30 and various values of α.

Example 4.3. Let us consider the following nonlinear fractional Klein-Gordon equation with qubic nonlinearity
∂αu(x,t)
∂tα + u(x, t) + 3

2 (u(x, t))3 = ∂2u(x,t)
∂x2 + f(x, t), 0 ≤ x, t ≤ 1,

u(x, 0) = 0, ∂u(x,0)
∂t = 0, 0 ≤ x ≤ 1,

u(0, t) = 0, u(1, t) = 0,

(4.3)

where f(x, t) = Γ(3−α)
2 sin(πx)t2 +

(
1 + π2

)
sin(πx)t2+α + 3

2 (u(x, t))3. The exact solution to the problem is u(x, t) =

sin(πx)t2+α. Tables 5 and 6 show the maximum absolute errors and CPU time of the obtained approximate solutions
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Table 3. Maximum absolute error for example 4.2 with N = 30 and various values of δt and α.

α = 1.5 α = 1.7 α = 1.9 CPU time(s)

δt = 0.01 1.4236× 10−3 4.15844× 10−3 1.10772× 10−2 7.40

δt = 0.005 7.23734× 10−4 2.49251× 10−3 7.59888× 10−3 16.98

δt = 0.001 1.47711× 10−4 7.32791× 10−4 4.39273× 10−3 318.71

δt = 0.0005 7.41767× 10−5 4.28641× 10−4 8.40538× 10−4 1275.63

Method [22] 8.7105× 10−4 6.2045× 10−4 9.4248× 10−4 —

Method [35] 2.6018× 10−4 2.1305× 10−4 9.0333× 10−4 2127.98

Table 4. Maximum absolute error for example 4.2 with δt = 0.001 and various values of N and α.

α = 1.5 α = 1.7 α = 1.9 CPU time(s)

N = 10 8.71076× 10−4 9.70736× 10−4 9.04048× 10−3 121.67

N = 20 6.47747× 10−4 8.32939× 10−4 7.03614× 10−3 233.55

N = 30 1.47711× 10−4 7.32791× 10−4 4.39273× 10−3 318.71

Figure 2. Graph of absolute error for example 4.2 with δt = 0.0005, N = 30 and various values of α.

for Example 4.3 with various values of N, δt and α. For comparison, the best results reported in [22] and [35] are given
in Table 5. We observed that the absolute errors are decreased by increasing N or by decreasing δt. Figure 3 presents
the graph of the absolute errors of the approximate solutions for Example 4.3 with δt = 0.0007, N = 30 and various
values of α.
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Table 5. Maximum absolute error for example 4.3 with N = 30 and various values of δt and α.

α = 1.5 α = 1.7 α = 1.9 CPU time(s)

δt = 0.01 9.14409× 10−3 1.13218× 10−2 1.77801× 10−2 6.79

δt = 0.005 4.45119× 10−3 5.46873× 10−3 8.63986× 10−3 16.67

δt = 0.001 8.60429× 10−4 1.03633× 10−3 1.63348× 10−3 313.75

δt = 0.0005 4.27425× 10−4 5.10939× 10−4 8.01469× 10−4 1181.34

Method [22] 1.6396× 10−3 1.5471× 10−3 1.4380× 10−3 —

Method [35] 8.1773× 10−4 1.0003× 10−3 1.6051× 10−3 3484.98

Table 6. Maximum absolute error for example 4.3 with δt = 0.001 and various values of N and α.

α = 1.5 α = 1.7 α = 1.9 CPU time(s)

N = 10 1.80611× 10−3 1.80539× 10−3 1.95394× 10−3 115.30

N = 20 8.21644× 10−4 1.20756× 10−3 1.77606× 10−3 226.83

N = 30 8.60429× 10−4 1.03633× 10−3 1.63348× 10−3 313.75

Figure 3. Graph of absolute error for example 4.3 with δt = 0.0005, N = 30 and various values of α.

From the results presented in this section, it can be seen that by increasing the number of node points or by
decreasing the time step size, we can obtain more accurate approximations which confirms the presented convergence
analysis. In fact, even with a small number of grid points, we can obtain approximate solutions with acceptable
accuracy.
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5. Conclusions

In this paper, the numerical solution of nonlinear time-fractional Klein-Gordon and sine-Gordon equations based
on the Sinc operational matrices are investigated. A finite difference scheme is combined with the Sinc method to
discretize the nonlinear fractional problem. Furthermore, the convergence of the combined method is proven. Some
numerical examples are provided to confirm the applicability and accuracy of the proposed method. The results
of numerical experiments are compared with the analytical solution and the reported results in the literature. The
numerical results confirm the convergence analysis and exhibit that the proposed method is powerful and accurate.
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